A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Classification of heart rate signals of healthy and pathological subjects using threshold based symbolic entropy. | LitMetric

The dynamical fluctuations of biological signals provide a unique window to construe the underlying mechanism of the biological systems in health and disease. Recent research evidences suggest that a wide class of diseases appear to degrade the biological complexity and adaptive capacity of the system. Heart rate signals are one of the most important biological signals that have widely been investigated during the last two and half decades. Recent studies suggested that heart rate signals fluctuate in a complex manner. Various entropy based complexity analysis measures have been developed for quantifying the valuable information that may be helpful for clinical monitoring and for early intervention. This study is focused on determining HRV dynamics to distinguish healthy subjects from patients with certain cardiac problems using symbolic time series analysis technique. For that purpose, we have employed recently developed threshold based symbolic entropy to cardiac inter-beat interval time series of healthy, congestive heart failure and atrial fibrillation subjects. Normalized Corrected Shannon Entropy (NCSE) was used to quantify the dynamics of heart rate signals by continuously varying threshold values. A rule based classifier was implemented for classification of different groups by selecting threshold values for the optimal separation. The findings indicated that there is reduction in the complexity of pathological subjects as compared to healthy ones at wide range of threshold values. The results also demonstrated that complexity decreased with disease severity.

Download full-text PDF

Source
http://dx.doi.org/10.1556/ABiol.65.2014.3.2DOI Listing

Publication Analysis

Top Keywords

heart rate
16
rate signals
16
threshold values
12
pathological subjects
8
threshold based
8
based symbolic
8
symbolic entropy
8
biological signals
8
time series
8
signals
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!