Polyethyleneimine-mediated synthesis of superparamagnetic iron oxide nanoparticles with enhanced sensitivity in T2 magnetic resonance imaging.

Colloids Surf B Biointerfaces

Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea; Department of Bio-fibers and materials Science, Kyungpook National University, Daegu 702-701, Republic of Korea. Electronic address:

Published: October 2014

The development of iron oxide nanoparticles (IONPs) with enhanced r2 relaxivity is important for achieving greater sensitivity in in vivo magnetic resonance (MR) imaging. In this study, it was considered that polyethyleneimine (PEI) could play a role in varying the particle and cluster sizes in IONP synthesis, leading to different r2 relaxivities. To demonstrate this, superparamagnetic IONPs were synthesised in the presence of NH4OH and PEI using a co-precipitation method. PEI acted as an active stabiliser during IONP synthesis, and therefore the particle size, hydrodynamic cluster size, coating layer thickness, saturation magnetisation, and r2 relaxivity were all strongly influenced by the PEI concentration. Monodispersed IONPs with a mean hydrodynamic cluster size of 14.4nm were synthesised at a PEI concentration of 0.05wt% and in this case, the r2 relaxivity was increased up to 227.6mM(-1)s(-1). This confirmed the viability of PEI-mediated synthesis as a means of controlling the particle/cluster size and enhancing the r2 relaxivity. The PEI-IONPs exhibited no significant cytotoxicity up to 132ppm. Rapid and strong uptake of PEI-IONPs was detected in rat liver by in vivo MR imaging. The superparamagnetic PEI-IONPs prepared in this study are considered to be sufficiently sensitive for use as MR imaging contrast agents, which can be used as parent particles for further functional modification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2014.08.015DOI Listing

Publication Analysis

Top Keywords

iron oxide
8
oxide nanoparticles
8
magnetic resonance
8
resonance imaging
8
study considered
8
ionp synthesis
8
hydrodynamic cluster
8
cluster size
8
pei concentration
8
pei
5

Similar Publications

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

New Insights on Iron-Trimesate MOFs for Inorganic As(III) and As(V) Adsorption from Aqueous Media.

Nanomaterials (Basel)

December 2024

Unidad Departamental de Química Analítica, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Spain.

Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive properties. In this study, the performance of a synthesized Nano-{Fe-BTC} MOF, containing iron oxide octahedral chains connected by trimesic acid linkers, in adsorbing As(III) and As(V) species was investigated and compared with commercial BasoliteF300 MOF.

View Article and Find Full Text PDF

Hypoxia, a phenomenon that occurs when the oxygen level in tissues is lower than average, is commonly observed in human solid tumors. For oncological treatment, the hypoxic environment often results in radioresistance and chemoresistance. In this study, a new multifunctional oxygen carrier, carboxymethyl hexanoyl chitosan (CHC) nanodroplets decorated with perfluorohexane (PFH) and superparamagnetic iron oxide (SPIO) nanodroplets (SPIO@PFH-CHC), was developed and investigated.

View Article and Find Full Text PDF

This review highlights recent progress in utilizing iron oxide nanoparticles (IONPs) as a safer alternative to gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI). It consolidates findings from multiple studies, discussing current T contrast agents (CAs), the synthesis techniques for IONPs, the theoretical principles for designing IONP-based MRI CAs, and the key factors that impact their T contrast efficacy, such as nanoparticle size, morphology, surface modifications, valence states, and oxygen vacancies. Furthermore, we summarize current strategies to achieve IONP-based responsive CAs, including self-assembly/disassembly and distance adjustment.

View Article and Find Full Text PDF

Sensitive and selective colorimetric detection of thiophanate-methyl based on a novel Ru-FeO nanozyme with enhanced peroxidase-like activity.

Mikrochim Acta

January 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.

A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!