Background Context: The pendulum testing system is capable of applying physiologic compressive loads without constraining the motion of functional spinal units (FSUs). The number of cycles to equilibrium observed under pendulum testing is a measure of the energy absorbed by the FSU.
Objective: To examine the dynamic bending stiffness and energy absorption of the cervical spine, with and without implanted cervical total disc replacement (TDR) under simulated physiologic motion.
Study Design: A biomechanical cadaver investigation.
Methods: Nine unembalmed, frozen human cervical FSUs from levels C3-C4 and C5-C6 were tested on the pendulum system with axial compressive loads of 25, 50, and 100 N before and after TDR implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°, resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and the bending stiffness (Newton-meter/°) was calculated and compared for each testing mode.
Results: In flexion/extension, with increasing compressive loading from 25 to 100 N, the average number of cycles to equilibrium for the intact FSUs increased from 6.6 to 19.1, compared with 4.1 to 12.7 after TDR implantation (p<.05 for loads of 50 and 100 N). In flexion, with increasing compressive loading from 25 to 100 N, the bending stiffness of the intact FSUs increased from 0.27 to 0.59 Nm/°, compared with 0.21 to 0.57 Nm/° after TDR implantation. No significant differences were found in stiffness between the intact FSU and the TDR in flexion/extension and lateral bending at any load (p<.05).
Conclusions: Cervical FSUs with implanted TDR were found to have similar stiffness, but had greater energy absorption than intact FSUs during cyclic loading with an unconstrained pendulum system. These results provide further insight into the biomechanical behavior of cervical TDR under approximated physiologic loading conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.spinee.2014.08.442 | DOI Listing |
Exp Brain Res
January 2025
Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, MS 033, 415 South Street, Waltham, MA, 02453, USA.
Younger adults (YA) and older adults (OA) used a joystick to stabilize an unstable visual inverted pendulum (VIP) with a fundamental frequency (.27 Hz) of half that of bipedal human sway. Their task was to keep the VIP upright and to avoid ± 60° "fall" boundaries.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh.
This study investigated a composite material combining epoxy with hybrid jute (J) and glass (G) fibers. A straightforward and effective fabrication method was employed, utilizing five layers with various reinforcement materials. To identify the optimal combination, a comprehensive series of tests were conducted using a range of characterization instruments, including Scanning Electron Microscopy (SEM), Universal Testing Machine (UTM), pendulum impact tester, density measurement, specific gravity evaluation, water absorption, and swelling thickness tests.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Space Environmental Load Engineering Center, Lanzhou Institute of Physics, Lanzhou 730000, China.
J Biomech
December 2024
Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States. Electronic address:
While levodopa is the most effective drug for symptom treatment of Parkinson's Disease (PD), its long-term use often leads to side effects such as uncontrolled involuntary movements known as levodopa-induced dyskinesia (LID). LID has been shown to increase postural sway, but the extent to which these hyperkinetic movements alter postural sway strategies has not been explored. We recruited 25 people with idiopathic PD, of which 13 exhibit clinical signs of LID, and 10 healthy older adults.
View Article and Find Full Text PDFSurg Technol Int
November 2024
Stryker, Joint Replacement, Mahwah, New Jeresey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!