Acute intermittent hypoxia (AIH) triggers a form of respiratory plasticity known as long-term facilitation (LTF), which is manifested as a progressive increase in respiratory motor activity that lasts for minutes to hours after the hypoxic stimulus is removed. Respiratory LTF has been reported in numerous animal models, but it appears to be influenced by a variety of factors (e.g., species, age, and gender). While most studies focusing on respiratory LTF have been conducted in adult (including young adult) rat preparations, little is known about the influence of postnatal maturation on AIH-induced respiratory LTF. To begin to address this issue, we examined diaphragm EMG activity in response to and at 5-min intervals for 60 min following three 5-min episodes of hypoxia (8% O2) in urethane-anesthetized spontaneously breathing P14-P15 neonatal rats (n=15). For these experiments, the hypoxic episodes were separated by hyperoxia (40% O2), and all rats were continuously supplied with ~4% CO2. During the AIH trials, burst frequency was increased by ~20-90% above baseline in each of the rats examined while changes in burst amplitude were highly variable. Following the AIH episodes, respiratory LTF was characterized by predominantly an increase in burst frequency (fLTF) ranging from ~10% to 55%, with most rats exhibiting a 20-40% increase. In seven rats, however, an increase in amplitude (ampLTF) (~10%, n=3; ~20%, n=3; ~30%, n=1) was also noted. These data suggest that in contrast to observations in anesthetized ventilated adult rats, in anesthetized spontaneously breathing P14-P15 neonatal rats, respiratory LTF is dominated by fLTF, not ampLTF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-444-63488-7.00011-2 | DOI Listing |
Respir Physiol Neurobiol
January 2025
Department of Neuroscience, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, 741 S. Limestone St., Lexington, KY 40508, USA.. Electronic address:
Obstructive sleep apnea (OSA) is a breathing disorder in which airway obstruction during sleep leads to periodic bouts of inadequate (hypopneic) or absent (apneic) ventilation despite neurorespiratory effort. Repetitive apneic and hypopneic exposures can induce intermittent hypoxemia and lead to a host of maladaptive behavioral and physiological outcomes. Intermittent hypoxia treatment (IH), which consists of alternating exposure to hypoxic and normal air, can induce a long-lasting increase in breathing motor outputs called long term facilitation (LTF).
View Article and Find Full Text PDFBMC Pulm Med
October 2024
Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China.
Background: Chronic obstructive pulmonary disease (COPD) is a complex respiratory condition influenced by environmental and genetic factors. Using next-generation sequencing, we aimed to identify dysregulated genes and potential therapeutic targets for COPD.
Methods: Peripheral blood leukocyte RNA profiles from COPD patients and healthy controls were analyzed using next-generation sequencing.
Int J Mol Sci
October 2024
BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Several studies have described the proteomic profile of different immune cell types, but only a few have also analysed the content of their delivered small extracellular vesicles (sEVs). The aim of the present study was to compare the protein signature of sEVs delivered from granulocytes (i.e.
View Article and Find Full Text PDFViral Immunol
May 2024
Hebei Province Center for Disease Control and Prevention, Shijiazhuang, China.
COVID-19 is a highly infectious respiratory disease whose progression has been associated with multiple factors. From SARS-CoV-2 infection to death, biomarkers capable of predicting different disease processes are needed to help us further understand the molecular progression of COVID-19 disease. The aim is to find differentially expressed proteins that are associated with the progression of COVID-19 disease or can be potential biomarkers, and to provide a reference for further understanding of the molecular mechanisms of COVID-19 occurrence, progression, and treatment.
View Article and Find Full Text PDFCNS Neurosci Ther
February 2024
Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Aims: This study aimed to investigate key regulators of aberrant iron metabolism in gliomas, and evaluate their effect on biological functions and clinical translational relevance.
Methods: We used transcriptomic data from multiple cross-platform glioma cohorts to identify key iron metabolism-related genes (IMRGs) based on a series of bioinformatic and machine learning methods. The associations between IMRGs and prognosis, mesenchymal phenotype, and genomic alterations were analyzed in silico.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!