The signaling characteristics of Na(+)/K(+)-ATPase are distinct from its ion pumping activity. Cardiac glycosides modulate the Na(+)/K(+)-ATPase protein complex upon binding, activate downstream signaling pathways and increase [Ca(2+)]i. Recent studies demonstrate that the depletion of p53 and hypoxia-induced factor 1α proteins is caused by cardiac glycosides. However, the detailed mechanisms governing this process are not well known. In this study, we showed that the depletion of p53 proteins by digoxin involved not only inhibition of protein synthesis but also inhibition at the post-transcriptional level. Post-transcriptional regulation occurs via down-regulation of SRSF3, the primary splicing factor responsible for the switch from p53α to the p53β isoform. Digoxin also modulated G2/M arrest, DNA damage and apoptosis through the p53-dependent pathway in HeLa cells. In addition, digoxin was involved in epithelial-mesenchymal-transition progression via E-cadherin reduction and snail induction. Digoxin had similar effects to caffeine, another SRSF3-reduced agent, on the cell cycle profile and DNA damage of cells. Interestingly, combined digoxin and caffeine treatment blocked cell cycle progression and conferred resistance to cell death via snail induction. These findings demonstrate that down-regulation of splicing factor, such as SRSF3, to alter cell cycle progression, cell death and invasion is a potential target for the drug repositioning of cardiac glycosides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2014.08.013 | DOI Listing |
J Mycol Med
December 2024
Laboratory of Engineering, Electrochemistry, Modeling and Environment Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
Datura Stramonium is a well-known and important medicinal plant that is widely used in various medical systems to treat conditions such as asthma, diabetes, and inflammatory diseases. The aim of this study was to prepare extracts of D. stramonium seeds in different solvent polarities for assessing phytochemical potential, in vitro biological activities, and molecular docking studies.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
October 2024
National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
Xueshuan Xinmaining Tablets and Capsules are two Chinese patent medicines with the same prescription, different preparation methods but the same function of replenishing Qi, activating blood, opening orifices, and relieving pain. Xueshuan Xinmaining Capsules were qualitatively analyzed by UPLC-Q/TOF-MS for the first time, and 61 compounds were identified, including 9 phenolic acids, 10 bufadienolides, 15 saponins, 5 bile acids, and 22 other compounds. The chemical composition was slightly different between Xueshuan Xinmaining Tablets and Capsules.
View Article and Find Full Text PDFMolecules
December 2024
Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstraße 5, 91058 Erlangen, Germany.
Enzymes capable of processing a variety of compounds enable plants to adapt to diverse environmental conditions. PRISEs (progesterone-5β-reductase/iridoid synthase-like enzymes), examples of such substrate-promiscuous enzymes, are involved in iridoid and cardenolide pathways and demonstrate notable substrate promiscuity by reducing the activated C=C double bonds of plant-borne and exogenous 1,4-enones. In this study, we identified PRISE genes in () and (), and the corresponding enzymes were determined to share a sequence identity of 95%.
View Article and Find Full Text PDFMolecules
December 2024
School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland.
is a lesser-known plant species belonging to the genus that grows in Kazakhstan. The aim of this study was to characterize the composition of the ethanolic, water, and hydroethanolic extracts from the aerial parts of by HPLC-ESI-QTOF-MS/MS to isolate the major compound isoquercitrin by HSCCC (High-Speed Counter-Current Chromatography) and to determine the cytotoxicity and anti-inflammatory potential of the extracts produced with this plant. Fingerprinting of the analyzed extracts showed the presence of a multitude of metabolites comprising polyphenols, organic acids, and coumarins, and only trace quantities of cardiac glycosides in the analyzed samples.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853.
Multiple hypotheses have been put forth to understand why defense chemistry in individual plants is so diverse. A major challenge has been teasing apart the importance of concentration vs. composition of defense compounds and resolving the mechanisms of diversity effects that determine plant resistance against herbivores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!