Reduced junctional Na+/Ca2+-exchanger activity contributes to sarcoplasmic reticulum Ca2+ leak in junctophilin-2-deficient mice.

Am J Physiol Heart Circ Physiol

Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; Department of Medicine/Cardiology, Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas;

Published: November 2014

Expression silencing of junctophilin-2 (JPH2) in mouse heart leads to ryanodine receptor type 2 (RyR2)-mediated sarcoplasmic reticulum (SR) Ca(2+) leak and rapid development of heart failure. The mechanism and physiological significance of JPH2 in regulating RyR2-mediated SR Ca(2+) leak remains elusive. We sought to elucidate the role of JPH2 in regulating RyR2-mediated SR Ca(2+) release in the setting of cardiac failure. Cardiac myocytes isolated from tamoxifen-inducible conditional knockdown mice of JPH2 (MCM-shJPH2) were subjected to confocal Ca(2+) imaging. MCM-shJPH2 cardiomyocytes exhibited an increased spark frequency width with altered spark morphology, which caused increased SR Ca(2+) leakage. Single channel studies identified an increased RyR2 open probability in MCM-shJPH2 mice. The increase in spark frequency and width was observed only in MCM-shJPH2 and not found in mice with increased RyR2 open probability with native JPH2 expression. Na(+)/Ca(2+)-exchanger (NCX) activity was reduced by 50% in MCM-shJPH2 with no detectable change in NCX expression. Additionally, 50% inhibition of NCX through Cd(2+) administration alone was sufficient to increase spark width in myocytes obtained from wild-type mice. Additionally, superresolution analysis of RyR2 and NCX colocalization showed a reduced overlap between RyR2 and NCX in MCM-shJPH2 mice. In conclusion, decreased JPH2 expression causes increased SR Ca(2+) leakage by directly increasing open probability of RyR2 and by indirectly reducing junctional NCX activity through increased dyadic cleft Ca(2+). This demonstrates two novel and independent cellular mechanisms by which JPH2 regulates RyR2-mediated SR Ca(2+) leak and heart failure development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217007PMC
http://dx.doi.org/10.1152/ajpheart.00413.2014DOI Listing

Publication Analysis

Top Keywords

ca2+ leak
16
ryr2-mediated ca2+
12
open probability
12
mcm-shjph2 mice
12
ca2+
9
sarcoplasmic reticulum
8
reticulum ca2+
8
heart failure
8
jph2 regulating
8
regulating ryr2-mediated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!