A mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. The coating changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area of the filter material. The volumetric NH4 (+) removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35.6 μm) of the mineral coating, which had a thickness of up to 600 ± 51 μm. Environmental scanning electron microscopic (E-SEM) observations suggested an extracellular polymeric substance-rich matrix and submicron-sized bacterial cells. Nitrifier diversity profiles were similar irrespective of the degree of mineral coating, as indicated by pyrosequencing analysis. Overall, our results demonstrate that mineral coating positively affects microbial colonization and activity in rapid sand filters, most likely due to increased volumetric cell abundances facilitated by the large surface area of internal mineral porosity accessible for microbial colonization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249022PMC
http://dx.doi.org/10.1128/AEM.01959-14DOI Listing

Publication Analysis

Top Keywords

mineral coating
44
rapid sand
16
mineral
12
coating
12
sand filters
12
filter material
12
microbial colonization
12
internal porosity
8
activity rapid
8
physical chemical
8

Similar Publications

The clinical performance of high-viscosity glass ionomer-based and bulk-fill resin-based restorations in permanent teeth with occlusal or proximal cavities: a systematic review and meta-analysis.

Clin Oral Investig

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Objectives: To summarize and analyze existing evidence regarding the clinical performance of high-viscosity glass-ionomer-based materials (HVGIs) and bulk-fill resin-based composites (BFs) in patients with occlusal or proximal cavities in permanent teeth.

Materials And Methods: A literature search was conducted using PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Embase, Scopus, and Web of Science (WOS) (last update: April 19th, 2024). Randomized control trials (RCTs), retrospective and prospective comparative cohorts were included.

View Article and Find Full Text PDF

Restoration and artificial reefs can assist the recovery of degraded reefs but are limited in scalability and climate resilience. The Mineral Accretion Technique (MAT) subjects metal artificial reefs to a low-voltage electrical current, thereby creating a calcium-carbonate coating. It has been suggested that corals on MAT structures experience enhanced health and growth.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a commonly synthetic chemical mainly used in producing plastic items. It is an endocrine-disrupting compound that causes irreversible health and environmental damage. Developing a simple method for BPA effective quantitative monitoring is emergently necessary.

View Article and Find Full Text PDF

Azurite, a natural mineral pigment consisting of basic copper carbonate (2CuCO·Cu(OH)), is one of the Middle Ages' most common blue pigments. Why paintings originally coated with azurite appear blackened today remains debated. Using a non-invasive multi-analytical approach, the study analysed several unexpectedly black-appearing details (objects such as books or clothing such as veils, robes, or mantles) in Antoine de Lonhy's works.

View Article and Find Full Text PDF

Low-Toxicity and High-Stability Fluorescence Sensor for the Selective, Rapid, and Visual Detection Tetracycline in Food Samples.

Molecules

December 2024

State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.

With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!