AI Article Synopsis

  • The North China Plain (NCP) faces serious air pollution issues, and previous studies mainly discussed factors like aerosol effects and frontal inversions, but this study focuses on the role of the nearby Loess Plateau's thermal effect on air quality.
  • During summer days, warm air from the Plateau creates a thermal inversion over the NCP, which limits the growth of the mixed boundary layer and causes pollutants to accumulate, leading to increased ozone levels.
  • The findings highlight a new mechanism (westerly warm advection) that affects the mixed layer, emphasizing the need for better understanding and forecasting of air quality problems in the NCP.

Article Abstract

The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (~1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2014.08.053DOI Listing

Publication Analysis

Top Keywords

loess plateau
16
boundary layer
16
mixed layer
16
layer structure
12
atmospheric boundary
8
layer
8
structure air
8
air quality
8
north china
8
china plain
8

Similar Publications

[Impacts of freeze-thaw process on soil microbial nutrient limitation in slope farmlands of the Chinese Mollisol region].

Ying Yong Sheng Tai Xue Bao

October 2024

State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.

Understanding the impacts of freeze-thaw action on soil microbial nutrient limitation can provide important support for sustainable utilization of black soil resources. We analyzed the impacts of freeze-thaw action on soil microbial nutrient limitation on a slope farmland located in a typical thick Mollisol region of Keshan County, Heilongjiang Province. We examined the responses of soil microbial nutrient limitation to soil erosion rates through measuring soil nutrient, soil microbial biomass, and soil enzyme activities before and after freeze-thaw under natural conditions, and estimated the soil erosion rates by Cs tracing technology.

View Article and Find Full Text PDF

To evaluate the effects of tillage measure on soil organic carbon (SOC) and influence degree of various factors on relative change rate of SOC at regional scale, we conducted a meta-analysis to investigate the impacts of tillage measures (CK, traditional deep tillage without straw return; NTS, no tillage with straw return; NT, no tillage without straw return; TS, traditional tillage with straw return; SS, subsoiling tillage) on SOC content and influence factors (climate conditions, soil types, cultivation types, and initial soil physicochemical properties) on relative change rate of SOC in dryland wheat fields on the Loess Plateau, based on literatures published during 2000-2023. Results indicated that NT, NTS, SS and TS performed varies positive effect on SOC content in 0-20 cm soil layer compared with CK. In addition, greater enhancement of SOC were obtained in conditions of loessal soil, mid-temperate zone, average annual temperature of ≤10 ℃ and average annual rainfall of ≤500 mm.

View Article and Find Full Text PDF

As the most effective way to remedy and reconstruct the degraded ecosystems, vegetation restoration could affect soil carbon and nitrogen cycles and water balance. We examined the responses of carbon, nitrogen, and water in 0-200 cm soil layer to vegetation restoration years by analyzing their distribution characteristics across a restoration chronosequence of plantation (5, 10, 15, 20, and 25 years) in alpine sandy region of the Qinghai-Tibetan Plateau. The results showed that the content and storage of soil organic carbon (SOC) and soil total nitrogen (STN) increased significantly, while that of soil inorganic carbon (SIC) decreased significantly with restoration years.

View Article and Find Full Text PDF

Design, Synthesis, and Fungicidal Activity of α-Methylene-γ-Butyrolactone Derivatives Bearing a Diphenyl Ether Moiety.

J Agric Food Chem

December 2024

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.

The γ-butyrolactone scaffold, commonly present in natural products and bioactive compounds, has played a crucial role in the development of novel pesticides. In this study, a series of α-methylene-γ-butyrolactone derivatives containing a diphenyl ether moiety were designed and synthesized using the scaffold splicing strategy. Bioassays revealed that several target compounds demonstrated potent fungicidal activities, particularly against and .

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi may promote growth and stress resilience of plants, particularly under water-deficit conditions. However, interactions among mycorrhizal fungi, wheat plants, and aphids like the English grain aphid Sitobion avenae (Hemiptera: Aphididae) under water-deficit stress are still not well understood. Here, we examined the colonization of the fungus Claroideoglomus etunicatum (Glomerales: Claroideoglomeraceae) on wheat, and its effects on development and behavior of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!