The role of defective mismatch repair (MMR) system in ovarian carcinoma is not well defined. The purpose of the study was to determine the relationship between microsatellite instability (MSI), promoter methylation and protein expression of MMR genes in epithelial ovarian carcinoma (EOC). MSI and promoter methylation of MLH1, MSH2 and PMS2 genes were studied using PCR methods in the study cohort. A small subset of samples was used to analyze the protein expression by immunohistochemistry (IHC). MSI was observed in >60% of tumor samples and 47% of normal ovaries. MLH1 was methylated in 37.5% and 64.3% EOCs and LMP tumors. The loss of immunoexpression of MMR genes was not seen in ovarian tumors. There was no correlation between MSI, promoter methylation and protein expression of the MMR genes suggesting that each may function independently. MSI is a common event in ovarian carcinoma and may increase the clinical awareness of the subset of tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2014.08.016DOI Listing

Publication Analysis

Top Keywords

promoter methylation
16
protein expression
16
methylation protein
12
ovarian carcinoma
12
msi promoter
12
mmr genes
12
microsatellite instability
8
mismatch repair
8
genes epithelial
8
epithelial ovarian
8

Similar Publications

A Lipoxygenase Gene Modulates Jasmonate Biosynthesis to Enhance Blast Resistance in Rice.

J Exp Bot

January 2025

State Key Laboratory for Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China.

Inhibition of jasmonic acid (JA) signaling renders plants more susceptible to biotic stresses. Pathogen infection can induce an increase in JA levels. However, our understanding of the mechanisms mediating pathogen-induced JA accumulation in rice (Oryza sativa) remains limited.

View Article and Find Full Text PDF

Unraveling TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR Transcription Factors in Safflower: A Blueprint for Stress Resilience and Metabolic Regulation.

Molecules

January 2025

Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.

Safflower ( L.), a versatile medicinal and economic crop, harbors untapped genetic resources essential for stress resilience and metabolic regulation. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors, exclusive to plants, are pivotal in orchestrating growth, development, and stress responses, yet their roles in safflower remain unexplored.

View Article and Find Full Text PDF

Characteristics and Functions of , a Terpenoid Synthesis-Related Gene in Lamb.

Int J Mol Sci

January 2025

State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.

Terpenoids, abundant and structurally diverse secondary metabolites in plants, especially in conifer species, play crucial roles in the plant defense mechanism and plant growth and development. In , terpenoids' biosynthesis relies on both the mevalonate (MVA) pathway and the 2-methyl-D-erythritol-4-phosphate (MEP) pathway, with 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS) catalyzing the sixth step of the MEP pathway. In this study, we cloned and conducted bioinformatics analysis of the gene from .

View Article and Find Full Text PDF

DNA Methylation in Colorectal Cancer as Potential Prognostic and Predictive Markers.

Biomolecules

January 2025

Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.

The DNA methylation of can regulate its gene expression and may play a role in the occurrence and progression of colorectal cancer (CRC). However, the association between DNA methylation and the prognosis of CRC patients has not yet been reported. In this study, differential methylation analysis was conducted in both blood and tissue cohorts, and differential expression analysis was performed in the tissue cohort with in vitro validation.

View Article and Find Full Text PDF

is a protogynous hermaphroditic fish that changes from female to male, but the underlying sex change mechanism remains as-yet unknown. In this study, we firstly cloned and characterized the sequence and protein structure of of We found that the genomic structure of was different from other species. Expression was detected in the developing gonad by applying qRT-PCR and in situ hybridization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!