Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates.

Tree Physiol

Department of Biological Sciences, Macquarie University, NSW 2109, Australia AXA Chair of Biosphere and Climate Impacts, Grand Challenges in Ecosystems and the Environment and Grantham Institute-Climate Change and the Environment, Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot SL5 7PY, UK.

Published: October 2014

Predicting the large-scale consequences of drought in contrasting environments requires that we understand how drought effects differ among species originating from those environments. A previous meta-analysis of published experiments suggested that the effects of drought on both stomatal and non-stomatal limitations to photosynthesis may vary consistently among species from different hydroclimates. Here, we explicitly tested this hypothesis with two short-term water stress experiments on congeneric mesic and xeric species. One experiment was run in Australia using Eucalyptus species and the second was run in Spain using Quercus species as well as two more mesic species. In each experiment, plants were grown under moist conditions in a glasshouse, then deprived of water, and gas exchange was monitored. The stomatal response was analysed with a recently developed stomatal model, whose single parameter g1 represents the slope of the relationship between stomatal conductance and photosynthesis. The non-stomatal response was partitioned into effects on mesophyll conductance (gm), the maximum Rubisco activity (Vcmax) and the maximum electron transport rate (Jmax). We found consistency among the drought responses of g1, gm, Vcmax and Jmax, suggesting that drought imposes limitations on Rubisco activity and RuBP regeneration capacity concurrently with declines in stomatal and mesophyll conductance. Within each experiment, the more xeric species showed relatively high g1 under moist conditions, low drought sensitivity of g1, gm, Vcmax and Jmax, and more negative values of the critical pre-dawn water potential at which Vcmax declines most steeply, compared with the more mesic species. These results indicate adaptive interspecific differences in drought responses that allow xeric tree species to continue transpiration and photosynthesis for longer during periods without rain.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpu072DOI Listing

Publication Analysis

Top Keywords

species
10
short-term water
8
water stress
8
stomatal mesophyll
8
limitations photosynthesis
8
tree species
8
xeric species
8
species experiment
8
mesic species
8
moist conditions
8

Similar Publications

The increasing demand for natural alternatives to synthetic fungicides has prompted research into natural products like essential oils for postharvest disease management. This study investigated the antifungal, antioxidant, cytotoxic, and genotoxic potential of essential oil mixtures derived from oregano, rosemary, and mint against Penicillium digitatum, the predominant fungal pathogen causing green mold in orange fruits. P.

View Article and Find Full Text PDF

Climatically Specialized Lineages of Batrachochytrium dendrobatidis, and its Likely Asian Origins.

Ecohealth

January 2025

Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China.

Chytridiomycosis is a wildlife disease that has caused significant declines in amphibian populations and species extinctions worldwide. Asia, where the causal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamndrivorans (Bsal) originated, has not witnessed mass die-offs.

View Article and Find Full Text PDF

Draft Genome of Naganishia uzbekistanensis from a Clinical Pulmonary Infection.

Mycopathologia

January 2025

Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.

This study presents the first high-quality assembled genome of Naganishia uzbekistanensis, derived from a clinical isolate CY11558 obtained from a patient with a postoperative pulmonary infection. This work provides an improved reference assembly for downstream research and diagnosis of infections caused by this species.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.

View Article and Find Full Text PDF

A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term dehydration treatments, in three model dicot species. During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant transcriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered to be rate-limiting in ABA biosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!