With an optimized expression cassette consisting of the soybean (Glycine max) native promoter modified for enhanced expression driving a chimeric gene coding for the soybean native amino-terminal 86 amino acids fused to an insensitive shuffled variant of maize (Zea mays) 4-hydroxyphenylpyruvate dioxygenase (HPPD), we achieved field tolerance in transgenic soybean plants to the HPPD-inhibiting herbicides mesotrione, isoxaflutole, and tembotrione. Directed evolution of maize HPPD was accomplished by progressively incorporating amino acids from naturally occurring diversity and novel substitutions identified by saturation mutagenesis, combined at random through shuffling. Localization of heterologously expressed HPPD mimicked that of the native enzyme, which was shown to be dually targeted to chloroplasts and the cytosol. Analysis of the native soybean HPPD gene revealed two transcription start sites, leading to transcripts encoding two HPPD polypeptides. The N-terminal region of the longer encoded peptide directs proteins to the chloroplast, while the short form remains in the cytosol. In contrast, maize HPPD was found almost exclusively in chloroplasts. Evolved HPPD enzymes showed insensitivity to five inhibitor herbicides. In 2013 field trials, transgenic soybean events made with optimized promoter and HPPD variant expression cassettes were tested with three herbicides and showed tolerance to four times the labeled rates of mesotrione and isoxaflutole and two times the labeled rates of tembotrione.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226376 | PMC |
http://dx.doi.org/10.1104/pp.114.247205 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial herbicide target in current research, playing an important role in the comprehensive management of resistant weeds. However, the limited crop selectivity and less effectiveness against grass weeds of many existing HPPD inhibitors, limit their further application. To address these issues, a series of novel HPPD inhibitors with fused ring structures were designed and synthesized by introducing an electron-rich indazolone ring and combining it with the classical triketone pharmacophore structure.
View Article and Find Full Text PDFJ Pediatr Endocrinol Metab
January 2025
Department of Rare Diseases, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye.
Objectives: Phenylketonuria (PKU) and tyrosinemia type 3 (HT3) are both rare autosomal recessive disorders of phenylalanine-tyrosine metabolism. PKU is caused by a deficiency in phenylalanine hydroxylase (PAH), leading to elevated phenylalanine (Phe) and reduced tyrosine (Tyr) levels. HT3, the rarest form of tyrosinemia, is due to a deficiency in 4-hydroxyphenylpyruvate dioxygenase (HPD).
View Article and Find Full Text PDFJ Exp Bot
December 2024
State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China.
This article comments on: 2024. Herbicide-resistant 4-hydroxyphenylpyruvate dioxygenase variants identified via directed evolution. Journal of Experimental Botany , https://doi.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), 41013 Sevilla, Spain.
Olive () fruit contains high amounts of tocopherols that are responsible, along with secoiridoid phenolic compounds, for most of the antioxidant and anti-inflammatory properties of virgin olive oil. This study focuses on the molecular and biochemical characterization of olive 4-hydroxyphenyl pyruvate dioxygenase (OeHPPD) catalyzing the biosynthesis of homogentisic acid, which constitutes the phenolic residue in the tocopherol molecule. OeHPPD is a cytoplasmic enzyme with a molecular weight of 49.
View Article and Find Full Text PDFPlants (Basel)
November 2024
College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
Weeds significantly impact paddy yields, and herbicides offer a cost-effective, rapid, and efficient solution compared to manual weeding, ensuring agricultural productivity. Tripyrasulfone, a novel 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor developed by Qingdao Kingagroot Chemicals Co., Ltd.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!