The GABRB1 gene is associated with thalamus volume and modulates the association between thalamus volume and intelligence.

Neuroimage

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.

Published: November 2014

The GABRB1 gene encodes the beta 1 subunit of the gamma-aminobutyric acid A receptor (GABA A receptor), which is responsible for mediating inhibitory neurotransmission in the thalamus. Potential relationships between the GABRB1 gene, thalamus volume, and intelligence have been suggested by previous clinical studies, but have not been directly examined among nonclinical samples. The current study collected structural MRI, genetic, and behavioral data from 316 healthy Chinese adults (including 187 females and 129 males), and examined associations between GABRB1 variants, thalamus volume, and intelligence (measured by the Wechsler Adult Intelligence Scale Revised). After controlling for intracranial volume, sex, and age, GABRB1 genetic polymorphism at the SNP rs7435958 had the strongest association with thalamus volume (p = 0.002 and 0.00008 for left and right thalamus volumes, respectively), with GG homozygotes having smaller bilateral thalamus volumes than the other genotypes. Furthermore, there were positive correlations between bilateral thalamus volumes and intelligence, especially for GABRB1 rs7435958 GG female homozygotes (r's = 0.31 and 0.29, p < 0.01, for the correlations of intelligence with left and right thalamus volumes, respectively). This study provides the first evidence for the involvement of the GABRB1 gene in the thalamus structure and their interactive effects on intelligence. Future studies of the thalamus-intelligence associations should consider genetic factors as potential moderators.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2014.08.048DOI Listing

Publication Analysis

Top Keywords

thalamus volume
20
gabrb1 gene
16
thalamus volumes
16
volume intelligence
12
thalamus
11
association thalamus
8
intelligence gabrb1
8
gene thalamus
8
left thalamus
8
bilateral thalamus
8

Similar Publications

Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are distinct demyelinating diseases of the central nervous system, each characterized by unique patterns of motor, sensory, and visual dysfunction. While MS typically affects the brain and spinal cord, NMOSD predominantly targets the optic nerves and spinal cord. This study aims to elucidate the morphometric differences between MS and NMOSD by focusing on gray matter volume changes in specific brain regions.

View Article and Find Full Text PDF

Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder.

Neuroradiology

January 2025

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.

Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.

View Article and Find Full Text PDF

Objective: The aim of this study was to explore the microstructural dynamics of the subventricular zone (SVZ) with aging and their associations with clinical disability and brain structural damage in pediatric-onset multiple sclerosis (MS) patients.

Methods: One-hundred and forty-one pediatric-onset MS patients (67 pediatric and 74 adults with pediatric-onset) and 233 healthy controls (HC) underwent neurological and 3.0 T MRI assessment.

View Article and Find Full Text PDF

The impact of cortical and subcortical volumes on major depression risk: A genetic study.

J Affect Disord

January 2025

Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China. Electronic address:

Objective: This study aimed to explore the causal relationship between brain cortical and subcortical structures and major depressive disorder (MDD) using the Mendelian Randomization (MR) method.

Methods: Single nucleotide polymorphisms (SNPs) were used as instrumental variables to analyze subcortical brain volume, cortical thickness, and surface area as exposure factors, with MDD as the outcome. Multiple sensitivity analyses were conducted to validate the robustness of the results.

View Article and Find Full Text PDF

Age-related changes in the vestibulothalamic pathway: association with balance ability and subjective visual vertical of vestibular function.

Brain Res Bull

January 2025

Department of Health, Graduate School, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Republic of Korea. Electronic address:

Introduction: The thalamus regulates various sensory information to each related brain area. The vestibular nucleus transmits information of motor control to the thalamus regulating coordination function. The vestibulothalamic tract (VTT) is a neural pathway between the vestibular nucleus and thalamus that processes vestibular information for postural balance and spatial perception.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!