Blockage of GSK3β-mediated Drp1 phosphorylation provides neuroprotection in neuronal and mouse models of Alzheimer's disease.

Neurobiol Aging

Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China. Electronic address:

Published: January 2015

It is well established that mitochondrial fragmentation plays a key role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial fission is mediated by dynamin-related protein 1 (Drp1), which is highly expressed in nervous system and regulated by various posttranslational modifications including phosphorylation. We identified glycogen synthase kinase (GSK)3β-dependent Drp1 phosphorylation at Ser(40) and Ser(44), which increases Drp1 GTPase activity and its mitochondrial distribution and could induce mitochondrial fragmentation. Moreover, neurons transfected with Ser(40)Ser(44) phosphomimic Drp1 showed increased mitochondria fragmentation and were more vulnerable to amyloid-β (Aβ)-induced apoptosis. Therefore, blocking GSK3β-induced Drp1 phosphorylation may be an effective way to protect neurons from Aβ toxicity. To address this, we designed and synthesized an artificial polypeptide named TAT-Drp1-SpS, which could specifically block GSK3β-induced Drp1 phosphorylation. Our results demonstrated that TAT-Drp1-SpS treatment could significantly reduce Aβ-induced neuronal apoptosis in cultured neurons. Notably, TAT-Drp1-SpS administration in hippocampus Cornu Ammonis 1 (CA1) region significantly reduced Aβ burden and rescued the memory deficits in AD transgenic mice. Although Aβ has multiple targets to exert its neurotoxicity, our findings suggested that GSK3β-induced mitochondrial fragmentation was, at least partially, mediated by Aβ toxicity and contribute to the pathogenesis of AD. Taken together, GSK3β-induced Drp1 phosphorylation provides a novel mechanism for mitochondrial fragmentation in AD, and our findings suggested a novel therapeutic strategy for AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2014.08.005DOI Listing

Publication Analysis

Top Keywords

drp1 phosphorylation
20
mitochondrial fragmentation
16
gsk3β-induced drp1
12
drp1
8
alzheimer's disease
8
aβ toxicity
8
findings suggested
8
phosphorylation
6
mitochondrial
6
fragmentation
5

Similar Publications

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in both Type 1 (T1D) and Type 2 (T2D). While there are no specific medications to prevent or treat DPN, certain strategies can help halt its progression. In T1D, maintaining tight glycemic control through insulin therapy can effectively prevent or delay the onset of DPN.

View Article and Find Full Text PDF

Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.

View Article and Find Full Text PDF

Postoperative cognitive dysfunction (POCD) is a prevalent clinical issue following anesthesia and surgery. The onset of POCD, which is closely linked to circadian rhythm disturbance in previous studies, yet the underlying mechanism remains elusive. There is increasing evidence showed that mitochondrial architecture is coordinated by the circadian clock which DRP1 playing a crucial role.

View Article and Find Full Text PDF

Recombinant Porcine FGF1 Promotes Muscle Stem Cell Proliferation and Mitochondrial Function for Cultured Meat Production.

J Agric Food Chem

January 2025

Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.

Cultured meat is an emerging technology with the potential to meet future protein demands while addressing the challenges associated with traditional livestock farming. The production of cultured meat requires efficient, animal component-free systems for muscle stem cell (MuSC) expansion. Fibroblast growth factor 1 (FGF1) is a critical growth factor that regulates the MuSC function.

View Article and Find Full Text PDF

Sexual Dimorphism of Ethanol-Induced Mitochondrial Dynamics in Purkinje Cells.

Int J Mol Sci

December 2024

Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore St., Baltimore, MD 21201, USA.

The cerebellum, a key target of ethanol's toxic effects, is associated with ataxia following alcohol consumption. However, the impact of ethanol on Purkinje cell (PC) mitochondria remains unclear. To investigate how ethanol administration affects mitochondrial dynamics in cerebellar Purkinje cells, we employed a transgenic mouse model expressing mitochondria-targeted yellow fluorescent protein in Purkinje cells (PC-mito-eYFP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!