Theoretical and experimental studies suggest that energetic offsets between the charge transport energy levels in different morphological phases of polymer:fullerene bulk heterojunctions may improve charge separation and reduce recombination in polymer solar cells (PSCs). In this work, we use cyclic voltammetry, UV-vis absorption, and ultraviolet photoelectron spectroscopy to characterize hole energy levels in the polymer phases of polymer:fullerene bulk heterojunctions. We observe an energetic offset of up to 150 meV between amorphous and crystalline polymer due to bandgap widening associated primarily with changes in polymer conjugation length. We also observe an energetic offset of up to 350 meV associated with polymer:fullerene intermolecular interactions. The first effect has been widely observed, but the second effect is not always considered despite being larger in magnitude for some systems. These energy level shifts may play a major role in PSC performance and must be thoroughly characterized for a complete understanding of PSC function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja505463r | DOI Listing |
Acc Chem Res
December 2024
College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
Sci Rep
January 2024
Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Str., 41-100, Gliwice, Poland.
The results of studies on the influence of zinc oxide nanoparticles (ZnO-NPs) on the structural, thermal and optical properties of thin films of mixtures of phenyl-C71-butyric acid methyl ester (PCBM) with poly[3-hexylthiophene] (P3HT) of various molecular weights are described in this article. The structural properties of the layers of: polymers, mixtures of polymers with fullerenes and their composites with ZnO-NPs were investigated using X-ray diffraction. Whereas their glass transition temperature and optical parameters have been determined by temperature-dependent spectroscopic ellipsometry.
View Article and Find Full Text PDFMaterials (Basel)
October 2022
Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
Fullerene derivatives offer great scope for modification of the basic molecule, often called a buckyball. In recent years, they have been the subject of numerous studies, in particular in terms of their applications, including in solar cells. Here, the properties of four recently synthesized fullerene C60 derivatives were examined regarding their optical properties and the efficiency of the charge transfer process, both in fullerene derivatives themselves and in their heterojunctions with poly (3-hexylthiophene).
View Article and Find Full Text PDFMater Horiz
April 2021
Department of Material Science and Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel.
The performance of organic solar cells (OSC) critically depends on the morphology of the active layer. After deposition, the active layer is in a metastable state and prone to changes that lead to cell degradation. Here, a high efficiency fullerene:polymer blend is used as a model system to follow the temperature-induced morphology evolution through a series of thermal annealing treatments.
View Article and Find Full Text PDFPolymer-fullerene blends based on poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C-butyric-acid methyl ester (PCBM) have been extensively studied as promising bulk heterojunction materials for organic semiconductor devices with improved performance. In these donor-acceptor systems where the bulk morphology plays a crucial role, the generation and subsequent decay mechanisms of photoexcitation species are still not completely understood. In this work, we use femtosecond transient absorption spectroscopy to investigate P3HT:PCBM diodes under the influence of applied static electric fields in comparison to P3HT:PCBM thin films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!