Nitrogen-doped/undoped thermally reduced graphene oxide (N-rGO) decorated with CoMn2O4 (CMO) nanoparticles were synthesized using a simple one-step hydrothermal method. The activity and stability of this hybrid catalyst were evaluated by preparing air electrodes with both primary and rechargeable zinc-air batteries that consume ambient air. Further, we investigated the relationship between the physical properties and the electrochemical results for hybrid electrodes at various cycles using X-ray diffraction, scanning electron microscopy, galvanodynamic charge-discharging and electrochemical impedance spectroscopy. The structural, morphological and electrocatalytic performances confirm that CMO/N-rGO is a promising material for safe, reliable, and long-lasting air cathodes for both primary and rechargeable zinc-air batteries that consume air under ambient condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am5047476 | DOI Listing |
Adv Mater
January 2025
School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia.
Oxygen evolution reaction (OER) is a cornerstone of various electrochemical energy conversion and storage systems, including water splitting, CO/N reduction, reversible fuel cells, and rechargeable metal-air batteries. OER typically proceeds through three primary mechanisms: adsorbate evolution mechanism (AEM), lattice oxygen oxidation mechanism (LOM), and oxide path mechanism (OPM). Unlike AEM and LOM, the OPM proceeds via direct oxygen-oxygen radical coupling that can bypass linear scaling relationships of reaction intermediates in AEM and avoid catalyst structural collapse in LOM, thereby enabling enhanced catalytic activity and stability.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Shanghai for Science and Technology, Institute of Energy Material Science, Shanghai 200093, Shanghai, CHINA.
Rechargeable zinc batteries (RZBs) are hindered by two primary challenges: instability of Zn anode and deterioration of the cathode structure in traditional aqueous electrolytes, largely attributable to the decomposition of active H2O. Here, we design and synthesize a non-flammable water-in-dimethyl sulfoxide electrolyte to address these issues. X-ray absorption spectroscopy, in situ techniques and computational simulations demonstrate that the activity of H2O in this electrolyte is extremely compressed, which not only suppresses the side reactions and increases the reversibility of Zn anode, but also diminishes the cathode dissolution and proton intercalation.
View Article and Find Full Text PDFSci Rep
December 2024
Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei GEO University, Shijiazhuang, 050031, China.
Iodine and fluoride are essential trace elements for human health, with both deficiency and excess intake impacting well-being. This study investigates the groundwater funnel area in eastern Hengshui City, utilizing groundwater level and hydrochemical data from 2014 to 2022. Hydrogeochemical methods were employed to comprehensively analyze the evolution characteristics and causes of iodine and fluoride concentrations in the funnel area.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Earth Sciences, Addis Ababa University, P.O. Box: 1176, Addis Ababa, Ethiopia.
The Abijata-Langano-Ziway Lakes Basin (ALZLB) is situated in the Central part of the Main Ethiopian Rift. The availability and dynamics of groundwater in the Abijata-Langano-Ziway Lakes Basin (ALZLB) are primarily controlled by its geological and hydrogeological characteristics, shaped by volcanic-tectonic and sedimentary processes. The basin faces significant challenges, including drastic change in land use pattern, rapid population growth sustained by subsistence farming, over-extraction of water resources, and vulnerability to climate change and fragile ecosystems.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Aiiso Yufeng Li Family Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA.
Rechargeable Li-SO batteries offer low-cost, high-energy density benefits and can leverage manufacturing processes for the existing primary version at a commercial scale. However, they have so far only been demonstrated in an "open-system" with continuous gas supply, preventing practical application. Here, the utilization and reversibility of SO along with the lithium stability are addressed, all essential for long-life, high-energy batteries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!