We compute the free energy minimizing structures of particle monolayers in the presence of enthalpic barriers of a finite height βV(ext) using classical density functional theory and Monte Carlo simulations. We show that a periodic square template with dimensions up to at least 10 times the particle diameter disrupts the formation of the entropically favored hexagonally close-packed 2D lattice in favor of a square lattice. The results illustrate how graphoepitaxy can successfully order nanoparticulate films into desired patterns many times smaller than those of the prepatterned template.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.113.085503 | DOI Listing |
ACS Appl Mater Interfaces
May 2024
CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France.
The directed self-assembly (DSA) of block copolymers (BCPs) is a promising next-generation lithography technique for high-resolution patterning. However, achieving lithographically applicable BCP organization such as out-of-plane lamellae requires proper tuning of interfacial energies between the BCP domains and the substrate, which remains difficult to address effectively and efficiently with high-χ BCPs. Here, we present the successful generation of anisotropic wetting by plasma treatment on patterned spin-on-carbon (SOC) substrates and its application to the DSA of a high-χ Si-containing material, poly(1,1-dimethylsilacyclobutane)--polystyrene (PDMSB--PS), with a 9 nm half pitch.
View Article and Find Full Text PDFiScience
April 2024
Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai 200438, China.
Directed self-assembly (DSA) lithography has demonstrated significant potential in fabricating integrated circuits. However, DSA encounters limited processing windows due to the requirement for precise matching between the period of block copolymers (BCPs) and graphoepitaxy templates. We propose a binary BCP/homopolymer blending strategy to manipulate the self-assembly behavior and the processing window of graphoepitaxy DSA in contact hole shrinking.
View Article and Find Full Text PDFHeliyon
January 2024
School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
Block copolymer (BCP) self-assembly has tremendous potential applications in next-generation nanolithography. It offers significant advantages, including high resolution and cost-effectiveness, effectively overcoming the limitations associated with conventional optical lithography. In this work, we demonstrate a focused solar annealing (FSA) technique that is facile, eco-friendly, and energy-efficient for fast self-assembly of polystyrene--poly(methyl methacrylate) (PS--PMMA) thin films.
View Article and Find Full Text PDFNat Commun
January 2024
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Bismuth ferrite has garnered considerable attention as a promising candidate for magnetoelectric spin-orbit coupled logic-in-memory. As model systems, epitaxial BiFeO thin films have typically been deposited at relatively high temperatures (650-800 °C), higher than allowed for direct integration with silicon-CMOS platforms. Here, we circumvent this problem by growing lanthanum-substituted BiFeO at 450 °C (which is reasonably compatible with silicon-CMOS integration) on epitaxial BaPbBiO electrodes.
View Article and Find Full Text PDFLangmuir
December 2023
Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
Density multiplication in nanopatterning is one of the most efficient techniques for increasing the resolution of the inherent patterns. Thus far, most of the density multiplication techniques integrate bottom-up (or top-down) patterning onto guide patterns prepared by the top-down approach. Although the bottom-up approach exhibits several advantages of cost-effectiveness and high resolution, very few studies have reported bottom-up patterning within a bottom-up template.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!