The crystallographic features of Gd-doped ceria were investigated at the operating temperature of solid oxides fuel cells, where these materials are used as solid electrolytes. (Ce(1-x)Gd(x))O(2-x/2) samples (x = 0.1, 0.3, 0.5, 0.7) were prepared by coprecipitation of mixed oxalates, treated at 1473 K in air, and analyzed by synchrotron X-ray diffraction in the temperature range 673 K ≤ T ≤ 1073 K at the Elettra synchrotron radiation facility located in Trieste, Italy. In the whole temperature span a boundary was found at x ∼ 0.2 between a CeO2-based solid solution (for x ≤ 0.2) and a structure where Gd2O3 microdomains grow within the CeO2 matrix, taking advantage of the similarity between Gd(3+) and Ce(4+) sizes; the existence of the boundary at x ∼ 0.2 was confirmed also by measurements of ionic conductivity performed by impedance spectroscopy. Similar to what observed at room temperature, the trend of the cell parameter shows the presence of a maximum; with increasing temperature, the composition corresponding to the maximum moves toward lower Gd content. This evidence can be explained by analyzing the behavior of the coefficient of thermal expansion as a function of composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic5011242 | DOI Listing |
Nat Commun
January 2025
Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark.
Electrostriction is the upsurge of strain under an electric field in any dielectric material. Oxygen-defective metal oxides, such as acceptor-doped ceria, exhibit high electrostriction 10 mV values, which can be further enhanced via interface engineering at the nanoscale. This effect in ceria is "non-classical" as it arises from an intricate relation between defect-induced polarisation and local elastic distortion in the lattice.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Korea Institute of Ceramic Engineering and Technology (KICET), Gyongsangnam-do, Jinju-Si, 52851, Republic of Korea.
Utilizing rare earth doped ceria in solid oxide cells (SOCs) engineering is indeed a strategy aimed at enhancing the electrochemical devices' durability and activity. Particularly, Gd-doped ceria (GDC) is actively used for barrier layer and catalytic additives in solid oxide fuel cells (SOFCs). In this study, experiments are conducted with La-doped CeO (LDC), in which the Ce sites are predominantly occupied by La, to prevent the formation of the Ce-Zr solid solution.
View Article and Find Full Text PDFNat Commun
September 2024
Central Facility for Electron Microscopy GFE, RWTH Aachen University, Aachen, Germany.
Ceria-based oxides are widely utilized in diverse energy-related applications, with attractive functionalities arising from a defective structure due to the formation of mobile oxygen vacancies ( ). Notwithstanding its significance, behaviors of the defective structure and in response to external stimuli remain incompletely explored. Taking the Gd-doped ceria (CeGdO) as a model system and leveraging state-of-the-art transmission electron microscopy techniques, reversible phase transitions associated with massive rearrangement are stimulated and visualized in situ with sub-Å resolution.
View Article and Find Full Text PDFSci Rep
August 2024
Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382421, India.
Doped ceria has been extensively explored as an efficient electrolyte material for intermediate to low temperature solid oxide fuel cell. Among other ceria electrolytes, gadolinia doped ceria (GDC) is one of the most extensively studied electrolyte materials for low temperature SOFC applications. Here, co-precipitation method is employed to synthesize GDC nanoparticles with stoichiometric ratio of GdCeO (with 0 x 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2024
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China. Electronic address:
Controlling the formation of single-atom (SA) sites from supported metal clusters is an important and interesting issue to effectively improve the catalytic performance of heterogeneous catalysts. For extensively studied CO oxidation over metal/CeO systems, the SA formation and stabilization under reaction conditions is generally attributed to CO adsorption, however, the pivotal role played by the reducible CeO support and the underlying electronic metal-support interaction (EMSI) are not yet fully understood. Based on a ceria-supported Cu catalyst model, we performed density functional theory calculations to investigate the intrinsic SA formation mechanism and discussed the synergistic effect of Gd-doped CeO and CO adsorption on the SA formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!