Overexpression of human epidermal growth factor receptor 2 (HER2) is associated with tumor aggressiveness and poor prognosis in breast cancer. With the availability of therapeutic antibodies against HER2, great strides have been made in the clinical management of HER2 overexpressing breast cancer. However, de novo and acquired resistance to these antibodies presents a serious limitation to successful HER2 targeting treatment. The identification of novel epitopes of HER2 that can be used for functional/region-specific blockade could represent a central step in the development of new clinically relevant anti-HER2 antibodies. In the present study, we present a novel computational approach as an auxiliary tool for identification of novel HER2 epitopes. We hypothesized that the structurally and linearly evolutionarily conserved motifs of the extracellular domain of HER2 (ECD HER2) contain potential druggable epitopes/targets. We employed the PROSITE Scan to detect structurally conserved motifs and PRINTS to search for linearly conserved motifs of ECD HER2. We found that the epitopes recognized by trastuzumab and pertuzumab are located in the predicted conserved motifs of ECD HER2, supporting our initial hypothesis. Considering that structurally and linearly conserved motifs can provide functional specific configurations, we propose that by comparing the two types of conserved motifs, additional druggable epitopes/targets in the ECD HER2 protein can be identified, which can be further modified for potential therapeutic application. Thus, this novel computational process for predicting or searching for potential epitopes or key target sites may contribute to epitope-based vaccine and function-selected drug design, especially when x-ray crystal structure protein data is not available.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156330 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106448 | PLOS |
Biochemistry
January 2025
Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
Enzymes of the enolase superfamily (ENS) are mechanistically diverse, yet share a common partial reaction, i.e., the metal-assisted, Bro̷nsted base-catalyzed abstraction of the α-proton from a carboxylate substrate to form an enol(ate) intermediate.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Division of Marine Ecology, Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
Ctenophora are basal marine metazoans, the sister group of all other animals. Mnemiopsis leidyi is one of the most successful invasive species worldwide with intense ecological and evolutionary research interest. Here, we generated a chromosome-level genome assembly of M.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China.
Background: Paeonia section Moutan DC. is a significant perennial subshrub, the ornamental value of which heavily depends on the type of flower it possesses. MADS-box transcription factors have a particular impact on the intricate process of floral organ development and differentiation.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biology, University of Konstanz, Konstanz, Germany.
Phosphorylation of substrates by cyclin-dependent kinases (CDKs) is the driving force of cell cycle progression. Several CDK-activating cyclins are involved, yet how they contribute to substrate specificity is still poorly understood. Here, we discover that a positively charged pocket in cyclin B1, which is exclusively conserved within B-type cyclins and binds phosphorylated serine- or threonine-residues, is essential for correct execution of mitosis.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
The bromodomain (BRD) represents a highly conserved structural module that provides BRD proteins with fundamental functionality in modulating protein-protein interactions involved in diverse biological processes such as chromatin-mediated gene transcription, DNA recombination, replication and repair. Consequently, dysregulation of BRD proteins has been implicated in the pathogenesis of numerous human diseases. In recent years, considerable scientific endeavors have focused on unraveling the molecular mechanisms underlying BRDs and developing inhibitors that target these domains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!