Purpose: In this work we present a dual-phase diffusion tensor imaging (DTI) technique that incorporates a correction scheme for the cardiac material strain, based on 3D myocardial tagging.
Methods: In vivo dual-phase cardiac DTI with a stimulated echo approach and 3D tagging was performed in 10 healthy volunteers. The time course of material strain was estimated from the tagging data and used to correct for strain effects in the diffusion weighted acquisition. Mean diffusivity, fractional anisotropy, helix, transverse and sheet angles were calculated and compared between systole and diastole, with and without strain correction. Data acquired at the systolic sweet spot, where the effects of strain are eliminated, served as a reference.
Results: The impact of strain correction on helix angle was small. However, large differences were observed in the transverse and sheet angle values, with and without strain correction. The standard deviation of systolic transverse angles was significantly reduced from 35.9±3.9° to 27.8°±3.5° (p<0.001) upon strain-correction indicating more coherent fiber tracks after correction. Myocyte aggregate structure was aligned more longitudinally in systole compared to diastole as reflected by an increased transmural range of helix angles (71.8°±3.9° systole vs. 55.6°±5.6°, p<0.001 diastole). While diastolic sheet angle histograms had dominant counts at high sheet angle values, systolic histograms showed lower sheet angle values indicating a reorientation of myocyte sheets during contraction.
Conclusion: An approach for dual-phase cardiac DTI with correction for material strain has been successfully implemented. This technique allows assessing dynamic changes in myofiber architecture between systole and diastole, and emphasizes the need for strain correction when sheet architecture in the heart is imaged with a stimulated echo approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156436 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107159 | PLOS |
Sci Rep
January 2025
College of Civil Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China.
Long-term erosion by acidic solutions in karst regions leads to continuous deterioration of the physical and mechanical properties at the interfaces of engineering structures, adversely affecting their operational performance. To investigate the degradation patterns of the mechanical properties and corrosion mechanisms of the concrete‒limestone composite (CLC) after exposure to acidic corrosion, three kinds of CLC samples treated with acidic solutions of different pH values were fabricated. Mechanical property analysis was conducted via triaxial compression testing methods.
View Article and Find Full Text PDFOphthalmic Physiol Opt
January 2025
Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan.
Purpose: This study evaluated the effects of orthokeratology and 0.01% atropine on corneal biomechanical properties (CBPs) and myopia progression in children, focusing on their association with axial length (AL) changes and treatment outcomes.
Methods: In this 1-year prospective study, 53 children (aged 8-17 years) were enrolled, with 30 undergoing orthokeratology and 23 receiving 0.
JOR Spine
March 2025
Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China.
Background: Growth rods are the gold standard for treating early-onset scoliosis (EOS). However, current treatments with growth rods do not optimize spinal growth in EOS patients, and frequent distraction surgeries significantly increase complications, imposing considerable economic and psychological burdens on patients. An improved growth rod is urgently required to address the need for dynamic growth and external regulation.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
January 2025
Department of Animal Science, Wageningen University & Research, Wageningen, The Netherlands.
White rot fungi can degrade lignin and improve the nutritional value of highly lignified biomass for ruminants. We screened for excellent fungi-biomass combinations by investigating the improvement of digestibility of wheat straw, barley straw, oat straw, rapeseed straw, miscanthus, new reed, spent reed from thatched roofs, and cocoa shells after colonisation by Ceriporiopsis subvermispora (CS), Lentinula edodes (LE), and Pleurotus eryngii (PE) (indicated by increased in vitro gas production [IVGP]). First, growth was evaluated for three fungi on all types of biomass, over a period of 17 days in race tubes.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical, Aerospace & Civil Engineering, University of Sheffield, Sheffield S1 3JD, UK.
Stress wave dispersion can result in the loss or distortion of critical high-frequency data during high-strain-rate material tests or blast loading experiments. The purpose of this work is to demonstrate the benefits of correcting stress wave dispersion in split-Hopkinson pressure bar experiments under various testing situations. To do this, an innovative computational algorithm, SHPB_Processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!