AI Article Synopsis

  • The study explored how different designs of occlusal rests in removable partial dentures affect pressure distribution under the denture bases.
  • Four types of occlusal rests were tested on patients with missing back teeth, measuring pressure using flexible sensors.
  • Results showed significant differences in pressure distribution depending on the type of occlusal rest used, indicating that the design chosen can impact comfort and stability for wearers.

Article Abstract

This study aimed to investigate the pressure distribution beneath the denture bases of removable partial dentures (RPDs) with different occlusal rest designs (ORDs) by in vivo measurement. Four types of detachable occlusal rests (mesial and distal, distal, mesial, and nonrest) were placed on the direct abutment teeth of distal extension RPDs in four patients with free-end edentulous mandibles. Pressure measurements were obtained by using thin and flexible tactile sensors. The results showed significant variances with different ORDs in all four patients (P < .05), leading to the conclusion that the pressure distribution on the residual ridge beneath the RPD base was dependent on the ORD.

Download full-text PDF

Source
http://dx.doi.org/10.11607/ijp.3847DOI Listing

Publication Analysis

Top Keywords

pressure distribution
12
occlusal rest
8
distribution beneath
8
beneath denture
8
distal extension
8
removable partial
8
effects occlusal
4
rest design
4
pressure
4
design pressure
4

Similar Publications

An analytical study of active earth pressure in cohesive soil considering interlayer shear stress.

PLoS One

January 2025

Ltd Project Construction Management Company, Jiangxi Provincial Communications Investment Group Co., Nanchang, China.

The impact of interlayer shear stress on the distribution of earth pressure in cohesive soil is notable, but currently, there lacks a comprehensive theory that integrates this factor in the calculation of active earth pressure. Drawing from the Mohr stress circle specific to clay soils, a formula to calculate interlayer shear stress has been derived. Moreover, a robust model has been formulated to compute the active earth pressure in clay soils, incorporating elements such as interlayer shear stress, effects of displacement, soil arching, and the morphology of the sliding surface.

View Article and Find Full Text PDF

Respiratory diseases represent a significant healthcare burden, as evidenced by the devastating impact of COVID-19. Biophysical models offer the possibility to anticipate system behavior and provide insights into physiological functions, advancements which are comparatively and notably nascent when it comes to pulmonary mechanics research. In this context, an Inverse Finite Element Analysis (IFEA) pipeline is developed to construct the first continuously ventilated three-dimensional structurally representative pulmonary model informed by both organ- and tissue-level breathing experiments from a cadaveric human lung.

View Article and Find Full Text PDF

The Stenotrophomonas maltophilia L2 cephalosporinase is one of two beta-lactamases which afford S. maltophilia beta-lactam resistance. With the overuse of beta-lactams, selective pressures have contributed to the evolution of these proteins, generating proteins with an extended spectrum of activity.

View Article and Find Full Text PDF

Introduction: Noncommunicable diseases, especially diabetes and hypertension, have emerged as significant public health challenges. Regular screening, even among healthy individuals, is essential for early diagnosis and prevention of complications.

Methods: This cross-sectional study was conducted in an urban ward of the Sangli-Miraj-Kupwad municipal corporation in Maharashtra, India, and cluster random sampling was used to collect data.

View Article and Find Full Text PDF

Background Femoral neuropathy is a significant postoperative complication in gynecological surgery that can severely impact patient mobility and quality of life. Among various mechanisms of nerve injury, retractor-induced compression against the pelvic sidewall has been identified as a particularly crucial causative factor. Despite this well-recognized mechanism and its clinical importance, few studies have investigated specific preventive strategies for this iatrogenic complication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!