Ossification of the posterior longitudinal ligament of the cervical spine (OPLL) is characterized by the replacement of ligament tissues with ectopic bone formation, and this result is strongly affected by genetic and local factors. Two single nucleotide polymorphisms (SNPs) of rs2273073 (T/G) and rs235768 (A/T) of bone morphogenetic protein 2 (BMP2) gene which are associated with OPLL have been reported in our previous report. In this study, we confirmed the connection in 18 case samples analysis of BMP2 gene in OPLL patients; additionally, it was also shown from the OPLL patients with ligament tissues that enchondral ossification and expression of BMP2 were significantly higher compared with the non-OPLL patients by histological examination, immunohistochemistry and Western blotting analysis. To investigate the underlying mechanism, we studied the effect of SNPs in cell model. The C3H10T1/2 cells with different BMP2 gene variants were constructed and then subjected to uniaxial cyclic stretch (0.5 Hz, 10% stretch). In the presence of mechanical stress, the expression of BMP2 protein in C3H10T1/2 cells transfected by BMP2 (rs2273073 (T/G)) and BMP2 (rs2273073 (T/G), rs235768 (A/T)) were significantly higher than the corresponding static groups (P<0.05). In conclusion, these results suggested that BMP2 gene variant of rs2273073 (T/G) could not only increase cell susceptibility to bone transformation similar to pre-OPLL change, but also increase the sensibility to mechanical stress which might play an important role during the progression of OPLL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156358 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106598 | PLOS |
Biomimetics (Basel)
December 2024
Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy.
In recent years, the demand for orthopedic implants has surged due to increased life expectancy, necessitating the need for materials that better mimic the biomechanical properties of human bone. Traditional metal implants, despite their mechanical superiority and biocompatibility, often face challenges such as mismatched elastic modulus and ion release, leading to complications and implant failures. Polyetheretherketone (PEEK), a semi-crystalline polymer with an aromatic backbone, presents a promising alternative due to its adjustable elastic modulus and compatibility with bone tissue.
View Article and Find Full Text PDFMed Mol Morphol
December 2024
Graduate School, Tianjin Medical University, Tianjin, 300070, China.
Ankylosing spondylitis (AS) is a chronic inflammatory disease involving the spine and bone joints, which is characterized by hyperosteogeny, ossification of ligaments, and ankylosis. Quercetin is a natural polyphenolic compound with various biological activities such as antioxidant, anti-inflammatory, and anti-tumor. It was to explore the effect of quercetin on AS ossification and its molecular mechanism.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
Plasma nitriding is one of the surface modifications that show more effectiveness than other methods. In this study, the plasma-based ion implantation (PBII) technique was performed on the surface of titanium alloy (Ti-6Al-4V, Ti64) using a mixture of nitrogen (N) and argon (Ar), resulting in a plasma-nitrided surface (TiN-Ti64). The surface composition of the TiN-Ti64 was verified through X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China. Electronic address:
Persistent bleeding and limited repair capacity greatly threaten patients with bone destruction. Designing inorganic-organic biomimetic scaffolds with quick hemostasis and osteogenesis functions will solve this problem. A novel degradable and naringin (NG) loaded porous scaffold (SCB-N) based on APTES-modified bioactive glass (ABG), carboxymethyl chitosan and silk fibroin is developed.
View Article and Find Full Text PDFBraz Dent J
December 2024
Graduate Program in Dentistry, University of North Parana (UNOPAR), Londrina, Paraná, Brazil.
This study aimed to assess the biological properties of two ready-to-use bioceramic sealers (EndoSequence BC Sealer - EBCS; Bio-C Sealer - BCS) on osteoblastic lineage cells. MC3T3 osteoblast-like cells were exposed to extracts of bioceramic materials. Cytotoxicity was evaluated using the MTT method, genotoxicity was assessed by the micronucleus test and the expression of BMP1, BMP2 and ALP was measured by RT-qPCR, after 1, 3 and 7 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!