A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Maternal long-chain PUFA supplementation during protein deficiency improves brain fatty acid accretion in rat pups by altering the milk fatty acid composition of the dam. | LitMetric

AI Article Synopsis

  • Long-chain polyunsaturated fatty acids (LC-PUFA) are crucial for brain development in fetuses and neonates, but maternal protein restriction can hinder their accumulation in the brain.
  • In a study involving Wistar rats, pups from mothers supplemented with n-3 DHA and n-6 arachidonic acid (ARA) on a low-protein diet had significantly higher brain DHA and n-3 fatty acid levels at birth compared to those on a low-protein diet without supplementation.
  • Supplementation influenced maternal milk composition, resulting in higher levels of DHA and ARA in milk from supplemented mothers, which helped improve the fatty acid profiles in the brains of their pups despite the initial protein restriction during gestation and lactation

Article Abstract

Long-chain PUFA (LC-PUFA) are important for fetal and neonatal brain development. However, their accretion in the brain is compromised during maternal protein restriction. Hence, we investigated the effect of maternal supplementation with n-3 DHA plus n-6 arachidonic acid (ARA) at a low protein level (9 %) on offspring brain fatty acid accretion using Wistar rats (nine rats per group) randomly fed a control (C), a low-protein (LP) or a low-protein DHA + ARA-supplemented (LPS) diet during gestation and lactation. At birth, pups from the LPS group had the highest brain DHA and n-3 fatty acid levels (P = 0·001), whereas pups from the LP group had the highest MUFA (P = 0·05) but the lowest DHA and total n-3 PUFA levels (P = 0·000). During lactation, pups from the LPS group accrued significantly more α-linolenic acid (P = 0·003), EPA (P = 0·02) and DHA (P = 0·000) in brain lipids than pups from the LP group, whereas brain lipids of pups from the LP group had markedly increased levels of the n-3 deficiency marker docosapentaenoic acid and n-6:n-3 ratio (P = 0·000). Owing to supplementation, milk from LPS dams had the highest DHA and ARA, but lower SCFA and medium-chain fatty acids as compared with milk from C and LP dams during early lactation, but normalised by mid-lactation. To conclude, adverse effects of restricted maternal protein intake on LC-PUFA accretion in the brain of offspring were ameliorated by alterations in maternal milk fatty acid profile due to supplementation. Results underscore the importance of LC-PUFA for protein-deficient mothers during gestation as well as lactation to achieve the optimum brain LC-PUFA status of progeny.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153033PMC
http://dx.doi.org/10.1017/jns.2012.25DOI Listing

Publication Analysis

Top Keywords

fatty acid
20
pups group
12
brain
9
long-chain pufa
8
brain fatty
8
acid
8
acid accretion
8
milk fatty
8
accretion brain
8
maternal protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!