Background: Smurf2 is a member of the HECT family of E3 ubiquitin ligases that play important roles in determining the competence of cells to respond to TGF- β/BMP signaling pathway. However, besides TGF-β/BMP pathway, Smurf2 regulates a repertoire of other signaling pathways ranging from planar cell polarity during embryonic development to cell proliferation, migration, differentiation and senescence. Expression of Smurf2 is found to be dysregulated in many cancers including breast cancer. The purpose of the present study is to examine the effect of Smurf2 knockdown on the tumorigenic potential of human breast cancer cells emphasizing more on proliferative signaling pathway.
Methods: siRNAs targeting different regions of the Smurf2 mRNA were employed to knockdown the expression of Smurf2. The biological effects of synthetic siRNAs on human breast cancer cells were investigated by examining the cell proliferation, migration, invasion, focus formation, anchorage-independent growth, cell cycle arrest, and cell cycle and cell proliferation related protein expressions upon Smurf2 silencing.
Results: Smurf2 silencing in human breast cancer cells resulted in a decreased focus formation potential and clonogenicity as well as in vitro cell migration/invasion capabilities. Moreover, knockdown of Smurf2 suppressed cell proliferation. Cell cycle analysis showed that the anti-proliferative effect of Smurf2 siRNA was mediated by arresting cells in the G0/G1 phase, which was caused by decreased expression of cyclin D1and cdk4, followed by upregulation p21 and p27. Furthermore, we demonstrated that silencing of Smurf2 downregulated the proliferation of breast cancer cells by modulating the PI3K- PTEN-AKT-FoxO3a pathway via the scaffold protein CNKSR2 which is involved in RAS-dependent signaling pathways. The present study provides the first evidence that silencing Smurf2 using synthetic siRNAs can regulate the tumorigenic properties of human breast cancer cells in a CNKSR2 dependent manner.
Conclusions: Our results therefore suggest a novel relation between Smurf2 and CNKSR2 thereby regulating AKT-dependent cell proliferation and invasion. Owing to the fact that PI3K-AKT signaling is hyperactivated in various human cancers and that Smurf2 also regulates cellular transformation, our results indicate that Smurf2 may serve as a potential molecule for targeted cancer therapy of certain tumour types including breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154384 | PMC |
http://dx.doi.org/10.1186/1747-1028-9-2 | DOI Listing |
Cell Mol Biol Lett
January 2025
Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.
Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA.
Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.
View Article and Find Full Text PDFSci Rep
January 2025
Chair of Obstetrics Development, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland.
The aim of the study is to analyze the relationship between personality traits of women with hereditary predisposition to breast/ovarian cancer and their obstetric history and cancer-preventive behaviors. A total of 357 women, participants of 'The National Program for Families With Genetic/Familial High Risk for Cancer', were included in the study. The Neo Five-Factor Inventory (NEO-FFI) and a standardized original questionnaire designed for the purpose of the study were used.
View Article and Find Full Text PDFSci Rep
January 2025
College of Information Science and Technology, Hainan Normal University, Haikou, 571158, China.
Breast cancer is one of the most aggressive types of cancer, and its early diagnosis is crucial for reducing mortality rates and ensuring timely treatment. Computer-aided diagnosis systems provide automated mammography image processing, interpretation, and grading. However, since the currently existing methods suffer from such issues as overfitting, lack of adaptability, and dependence on massive annotated datasets, the present work introduces a hybrid approach to enhance breast cancer classification accuracy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Thyroid and Breast Surgery, Liaoning Provincial People's Hospital, People's Hospital of China Medical University), Shenyang, China.
This study aimed to explore the diagnostic value of the two cytology techniques, including liquid-based cytology of mammary ductal lavage fluid and nipple discharge smear cytology, in the intraductal lesions in patients with pathological nipple discharge (PND). This retrospective analysis included 119 patients with PND who underwent surgical treatment. At the same time, they all underwent fiberoptic ductoscopy (FDS), nipple discharge smear cytology and liquid-based cytology of ductal lavage fluid before surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!