Developmental studies using the Iowa Gambling Task (IGT) or child-friendly adaptations of the IGT converged in showing that children and adolescents exhibit a strong bias in favor of disadvantageous choices whereas adults learn to decide advantageously during the course of the task. In the present article, we reviewed developmental studies that used the IGT or child-friendly adaptations of the IGT to show how these findings provide a better understanding of the processes involved in decision-making under uncertainty. For instance, developmental studies have underlined that until late adolescence, the dominant strategy is to focus only on the frequency of punishment and to choose among options with infrequent losses. Indeed, school-aged children and adolescents' choices in the IGT seem to be guided by the loss frequency leading them to fail in distinguishing between advantageous and disadvantageous options. In addition, recent developmental studies revealed that adults switch less often after losses than school-aged children and adolescents. These findings suggest that psychological tolerance to loss may facilitate learning the characteristics of each option, which in turn improves the ability to choose advantageously. In conclusion, developmental studies help us refine our understanding of decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138612 | PMC |
http://dx.doi.org/10.3389/fpsyg.2014.00915 | DOI Listing |
Mol Breed
January 2025
Department of Agricultural Biotechnology, Genome and Stem Cell Center, Erciyes University, Kayseri, 38280 Türkiye.
This study investigated the potential of extended irradiation combined with immature embryo culture techniques to accelerate generation advancements in safflower ( L.) breeding programs. We developed an efficient speed breeding method by applying light-emitting diodes (LEDs) that emit specific wavelengths, alongside the in vitro germination of immature embryos under controlled environmental conditions.
View Article and Find Full Text PDFGenome organization recapitulates function, yet ciliates like possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, 's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments.
View Article and Find Full Text PDFCentrioles play central roles in ciliogenesis and mitotic spindle assembly. Once assembled, centrioles exhibit long-term stability, a property essential for maintaining numerical control. How centriole stability is achieved and how it is lost in certain biological contexts are still not completely understood.
View Article and Find Full Text PDFUnlabelled: The use of microcomputed tomography (Micro-CT) for imaging biological samples has burgeoned in the past decade, due to increased access to scanning platforms, ease of operation, isotropic three-dimensional image information, and the ability to derive accurate quantitative data. However, manual data analysis of Micro-CT images can be laborious and time intensive. Deep learning offers the ability to streamline this process, but historically has included caveats-namely, the need for a large amount of training data, which is often limited in many Micro-CT studies.
View Article and Find Full Text PDFTemporal regulation of gene expression is required for developmental transitions, including differentiation, proliferation, and morphogenesis. In the nematode , heterochronic microRNAs (miRNAs) regulate the temporal expression of genes that promote animal development. The heterochronic miRNAs lin-4 and let-7 are required during different stages of larval development and are associated with the miRNA-specific Argonaute ALG-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!