Computational modeling predicts the ionic mechanism of late-onset responses in unipolar brush cells.

Front Cell Neurosci

Neurophysiology Unit, Department of Brain and Behavioral Science, University of Pavia Pavia, Italy ; Neurophysiology Unit, Brain Connectivity Center, Istituto Neurologico IRCCS C. Mondino Pavia, Italy.

Published: September 2014

Unipolar Brush Cells (UBCs) have been suggested to play a critical role in cerebellar functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamate receptor-dependent synaptic responses, a late-onset response (LOR) composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013). The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment, and axon) incorporating biologically realistic representations of ionic currents and a cytoplasmic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a burst triggered by a low-threshold spike (LTS) sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of bursts, which could effectively implement tunable delay-lines in the local microcircuit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138490PMC
http://dx.doi.org/10.3389/fncel.2014.00237DOI Listing

Publication Analysis

Top Keywords

unipolar brush
8
brush cells
8
computational modeling
4
modeling predicts
4
predicts ionic
4
ionic mechanism
4
mechanism late-onset
4
late-onset responses
4
responses unipolar
4
cells unipolar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!