Synapses, the basic units of communication in the brain, require complex molecular machinery for neurotransmitter release and reception. Whereas numerous components of excitatory postsynaptic sites have been identified, relatively few proteins are known that function at inhibitory postsynaptic sites. One such component is neuroligin-2 (NL2), an inhibitory synapse-specific cell surface protein that functions in cell adhesion and synaptic organization via binding to neurexins. In this study, we used a transgenic tandem affinity purification and mass spectrometry strategy to isolate and characterize NL2-associated complexes. Complexes purified from brains of transgenic His6-FLAG-YFP-NL2 mice showed enrichment in the Gene Ontology terms cell-cell signaling and synaptic transmission relative to complexes purified from wild type mice as a negative control. In addition to expected components including GABA receptor subunits and gephyrin, several novel proteins were isolated in association with NL2. Based on the presence of multiple components involved in trafficking and endocytosis, we showed that NL2 undergoes dynamin-dependent endocytosis in response to soluble ligand and colocalizes with VPS35 retromer in endosomes. Inhibitory synapses in brain also present a particular challenge for imaging. Whereas excitatory synapses on spines can be imaged with a fluorescent cell fill, inhibitory synapses require a molecular tag. We find the His6-FLAG-YFP-NL2 to be a suitable tag, with the unamplified YFP signal localizing appropriately to inhibitory synapses in multiple brain regions including cortex, hippocampus, thalamus, and basal ganglia. Altogether, we characterize NL2-associated complexes, demonstrate regulated trafficking of NL2, and provide tools for further proteomic and imaging studies of inhibitory synapses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4200284 | PMC |
http://dx.doi.org/10.1074/jbc.M114.549279 | DOI Listing |
J Lipid Res
December 2024
Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong Province, China. Electronic address:
High-fat diet (HFD) -induced microglial activation contributes to hypothalamic inflammation and obesity, but the mechanisms linking microglia to structural changes remain unclear. This study explored the role of microglia in impairing hypothalamic synaptic plasticity in diet-induced obesity (DIO) mice and evaluated the therapeutic potential of semaglutide (Sema) and minocycline (MI). Six-week-old C57BL/6J mice were divided into low-fat diet (LFD) and HFD groups.
View Article and Find Full Text PDFCurr Opin Neurobiol
December 2024
Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA. Electronic address:
GABAergic synaptic inhibition controls circuit function by regulating neuronal plasticity, excitability, and firing. To achieve these goals, inhibitory synapses themselves undergo several forms of plasticity via diverse mechanisms, strengthening and weakening phasic inhibition in response to numerous activity-induced stimuli. These mechanisms include changing the number and arrangement of functional GABARs within the inhibitory postsynaptic domain (iPSD), which can profoundly regulate inhibitory synapse strength.
View Article and Find Full Text PDFPain
November 2024
Center for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka, India.
The neural mechanisms of the affective-motivational symptoms of chronic pain are poorly understood. In chronic pain, our innate coping mechanisms fail to provide relief. Hence, these behaviors are manifested at higher frequencies.
View Article and Find Full Text PDFJ Comput Neurosci
December 2024
Department of Applied Mathematics, and Centre for Theoretical Neuroscience, University of Waterloo, 200 University Avenue W, Waterloo, N2L 3G1, ON, Canada.
Childhood absence epilepsy (CAE) is a paediatric generalized epilepsy disorder with a confounding feature of resolving in adolescence in a majority of cases. In this study, we modelled how the small-scale (synapse-level) effect of progesterone metabolite allopregnanolone induces a large-scale (network-level) effect on a thalamocortical circuit associated with this disorder. In particular, our goal was to understand the role of sex steroid hormones in the spontaneous remission of CAE.
View Article and Find Full Text PDFJ Neurophysiol
December 2024
Department of Biological Sciences, Lehigh University 111 Research Drive, Bethlehem, PA 18015 USA.
The thalamic reticular nucleus (TRN) is a thin shell of gap junction coupled GABAergic inhibitory neurons that regulate afferent sensory relay of the thalamus. The TRN receives dopaminergic innervation from the midbrain, and it is known to express high concentrations of D1 and D4 receptors. Although dopaminergic modulation of presynaptic inputs to TRN has been described, the direct effect of dopamine on TRN neurons and its electrical synapses is largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!