Background: Parascaris univalens is an ascaridoid nematode of equids. Little is known about its epidemiology and population genetics in domestic and wild horse populations. PCR-based methods are suited to support studies in these areas, provided that reliable genetic markers are used. Recent studies have shown that mitochondrial (mt) genomic markers are applicable in such methods, but no such markers have been defined for P. univalens.

Methods: Mt genome regions were amplified from total genomic DNA isolated from P. univalens eggs by long-PCR and sequenced using Illumina technology. The mt genome was assembled and annotated using an established bioinformatic pipeline. Amino acid sequences inferred from all protein-encoding genes of the mt genomes were compared with those from other ascaridoid nematodes, and concatenated sequences were subjected to phylogenetic analysis by Bayesian inference.

Results: The circular mt genome was 13,920 bp in length and contained two ribosomal RNA, 12 protein-coding and 22 transfer RNA genes, consistent with those of other ascaridoids. Phylogenetic analysis of the concatenated amino acid sequence data for the 12 mt proteins showed that P. univalens was most closely related to Ascaris lumbricoides and A. suum, to the exclusion of other ascaridoids.

Conclusions: This mt genome representing P. univalens now provides a rich source of genetic markers for future studies of the genetics and epidemiology of this parasite and its congener, P. equorum. This focus is significant, given that there is no published information on the specific prevalence and distribution of P. univalens infection in domestic and wild horse populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262126PMC
http://dx.doi.org/10.1186/1756-3305-7-428DOI Listing

Publication Analysis

Top Keywords

domestic wild
8
wild horse
8
horse populations
8
genetic markers
8
amino acid
8
phylogenetic analysis
8
univalens
5
mitochondrial genome
4
genome parascaris
4
parascaris univalens--implications
4

Similar Publications

Background: Neospora caninum (Apicomplexa, Sarcocystidae) is a protozoan parasite regarded as a major cause of reproductive failure in cattle. Swine are susceptible to N. caninum infection; however, the role of these animals in the circulation, maintenance, and transmission of N.

View Article and Find Full Text PDF

Leptospirosis is a zoonotic disease caused by bacteria, affecting humans and a broad range of wild and domestic animals in diverse epidemiological settings (rural, urban, and wild). The disease's pathogenesis and epidemiology are complex networks not fully elucidated. Epidemiology reflects the One Health integrated approach of environment-animal-human interaction, causing severe illness in humans and animals, with consequent public health burdens.

View Article and Find Full Text PDF

Invading species along with increased anthropogenization may lead to hybridization events between wild species and closely related domesticates. As a consequence, wild species may carry introgressed alleles from domestic species, which is generally assumed to yield adverse effects in wild populations. The opposite evolutionary consequence, adaptive introgression, where introgressed genes are positively selected in the wild species, is possible but has rarely been documented.

View Article and Find Full Text PDF

Maladapted immigrants may reduce wild population productivity and resilience, depending on the degree of fitness mismatch between dispersers and locals. Thus, domesticated individuals escaping into wild populations is a key conservation concern. In Prince William Sound, Alaska, over 700 million pink salmon () are released annually from hatcheries, providing a natural experiment to characterize the mechanisms underlying impacts to wild populations.

View Article and Find Full Text PDF

Reproductive management: conditioning, spawning and development of Peruvian grunt in southern Peru.

PeerJ

January 2025

Facultad de Ciencias Agropecuarias, Escuela Profesional de Ingeniería Pesquera, Universidad Nacional Jorge Basadre Grohmann, Tacna, Tacna, Peru.

The Peruvian grunt, , is beginning its domestication as a candidate species for marine aquaculture. The optimal management of fingerling production requires precise knowledge on early development. Herein, we report the methodology for capturing and conditioning wild specimens to find a viable broodstock.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!