Endothelial shear stress and coronary plaque characteristics in humans: combined frequency-domain optical coherence tomography and computational fluid dynamics study.

Circ Cardiovasc Imaging

From the Department of Medicine, Cardiology Division (R.V., T.Y., I.M., I.-K.J.) and Department of Medicine, Biostatistics Center (H.L.), Massachusetts General Hospital, and Department of Medicine, Cardiovascular Division, Brigham & Women's Hospital (M.I.P., I.A., C.L.F., P.H.S.), Harvard Medical School, Boston, MA; Department of Interventional Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands (C.V.B.); Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA (Z.W., J.G.F.); Department of Cardiovascular Medicine, Catholic University of the Sacred Heart, Rome, Italy (L.M.B., F.C.); and Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece (L.K.M.)

Published: November 2014

Background: Despite the exposure of the entire vasculature to the atherogenic effects of systemic risk factors, atherosclerotic plaques preferentially develop at sites with disturbed flow. This study aimed at exploring in vivo the relationship between local endothelial shear stress (ESS) and coronary plaque characteristics in humans using computational fluid dynamics and frequency-domain optical coherence tomography.

Methods And Results: Three-dimensional coronary artery reconstruction was performed in 21 patients (24 arteries) presenting with acute coronary syndrome using frequency-domain optical coherence tomography and coronary angiography. Each coronary artery was divided into sequential 3-mm segments and analyzed for the assessment of local ESS and plaque characteristics. A total of 146 nonculprit segments were evaluated. Compared with segments with higher ESS [≥1 Pascal (Pa)], those with low ESS (<1 Pa) showed higher prevalence of lipid-rich plaques (37.5% versus 20.0%; P=0.019) and thin-cap fibroatheroma (12.5% versus 2.0%; P=0.037). Overall, lipid plaques in segments with low ESS had thinner fibrous cap (115 μm [63-166] versus 170 μm [107-219]; P=0.004) and higher macrophage density (normalized standard deviation: 8.4% [4.8-12.6] versus 6.2% [4.2-8.8]; P=0.017). Segments with low ESS showed more superficial calcifications (minimum calcification depth: 93 μm [50-140] versus 152 μm [105-258]; P=0.049) and tended to have higher prevalence of spotty calcifications (26.0% versus 12.0%; P=0.076).

Conclusions: Coronary regions exposed to low ESS are associated with larger lipid burden, thinner fibrous cap, and higher prevalence of thin-cap fibroatheroma in humans. Frequency-domain optical coherence tomography-based assessment of ESS and wall characteristics may be useful in identifying vulnerable coronary regions.

Clinical Trial Registration Url: http://www.clinicaltrials.gov. Unique identifier: NCT01110538.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCIMAGING.114.001932DOI Listing

Publication Analysis

Top Keywords

plaque characteristics
12
frequency-domain optical
12
optical coherence
12
endothelial shear
8
shear stress
8
coronary plaque
8
characteristics humans
8
coherence tomography
8
computational fluid
8
fluid dynamics
8

Similar Publications

Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects the elderly population and is the leading cause of dementia. Meanwhile, the vascular hypothesis suggests that vascular damage occurs in the early stages of the disease, leading to neurodegeneration and hindered waste clearance, which in turn triggers a series of events including the accumulation of amyloid plaques and Tau protein tangles. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been found to be involved in the regulation of AD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and the aggregation of tau protein, resulting in intense memory loss and dementia. Diabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus, which is associated with decreased cognitive function and impaired memory. A growing body of literature emphasize the involvement of microglia in AD and DACD.

View Article and Find Full Text PDF

Methodological developments in biomedical research are currently moving towards single-cell approaches. This allows for a much better spatial and functional characterization of, for example, the deterioration of cells within a tissue in response to noxae. However, subcellular resolution is also essential to elucidate whether observed impairments are driven by an explicit organelle.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Laboratory for Neuropathology, KU Leuven, Leuven, Belgium.

Background: In 43-63% of symptomatic Alzheimer's disease (AD) patients, there is an observed accumulation of misfolded alpha-synuclein (αSyn). Two primary αSyn subtypes have been identified based on the underlying spreading pattern of this pathology: caudo-rostral and amygdala-predominant. Interactions between pathological TDP-43, Tau, and αSyn can aggravate their spread and aggregation.

View Article and Find Full Text PDF

Background: Down syndrome (DS) is strongly associated with Alzheimer's disease (AD), attributable to APP overexpression, displaying common features with early-onset AD (EOAD) and late-onset AD (LOAD) like Amyloid-β (Aβ) and tau pathology. Here, we evaluated the Aβ plaques proteome of DS, EOAD and LOAD.

Method: We used unbiased localized proteomics to analyze amyloid plaques and the adjacent plaque-devoid tissue ('AD non-plaque') from post-mortem paraffin-embedded tissues in three subtypes of AD (n = 20/group): DS (59.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!