Mercaptopropionic acid-capped Mn(2+):ZnSe/ZnO quantum dots with both downconversion and upconversion emissions for bioimaging applications.

Nanoscale

State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.

Published: November 2014

Doped quantum dots (d-dots) can serve as fluorescent biosensors and biolabels for biological applications. Our study describes a synthesis of mercaptopropionic acid (MPA)-capped Mn(2+):ZnSe/ZnO d-dots through a facile, cost-efficient hydrothermal route. The as-prepared water-soluble d-dots exhibit strong emission at ca. 580 nm, with a photoluminescence quantum yield (PLQY) as high as 31%, which is the highest value reported to date for such particles prepared via an aqueous route. They also exhibit upconversion emission when excited at 800 nm. With an overall diameter of around 6.7 nm, the d-dots could gain access to the cell nucleus without any surface decoration, demonstrating their promising broad applications as fluorescent labels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4576840PMC
http://dx.doi.org/10.1039/c4nr03490bDOI Listing

Publication Analysis

Top Keywords

quantum dots
8
mercaptopropionic acid-capped
4
acid-capped mn2+znse/zno
4
mn2+znse/zno quantum
4
dots downconversion
4
downconversion upconversion
4
upconversion emissions
4
emissions bioimaging
4
bioimaging applications
4
applications doped
4

Similar Publications

The rise of big data and the internet of things has driven the demand for multimodal sensing and high-efficiency low-latency processing. Inspired by the human sensory system, we present a multifunctional optoelectronic-memristor-based reservoir computing (OM-RC) system by utilizing a CuSCN/PbS quantum dots (QDs) heterojunction. The OM-RC system exhibits volatile and nonlinear responses to electrical signals and wide-spectrum optical stimuli covering ultraviolet, visible, and near-infrared (NIR) regions, enabling multitask processing of dynamic signals.

View Article and Find Full Text PDF

Enhancing Gene Delivery to Breast Cancer with Highly Efficient siRNA Loading and pH-Responsive Small Extracellular Vesicles.

ACS Biomater Sci Eng

December 2024

Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States.

Small extracellular vesicles (sEVs) are promising nanocarriers for drug delivery to treat a wide range of diseases due to their natural origin and innate homing properties. However, suboptimal therapeutic effects, attributed to ineffective targeting, limited lysosomal escape, and insufficient delivery, remain challenges in effectively delivering therapeutic cargo. Despite advances in sEV-based drug delivery systems, conventional approaches need improvement to address low drug-loading efficiency and to develop surface functionalization techniques for precise targeting of cells of interest, all while preserving the membrane integrity of sEVs.

View Article and Find Full Text PDF

Scintillating Glass Fiber Arrays Enable Remote Radiation Detection and Pixelated Imaging.

Adv Mater

December 2024

State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.

The emerging metal halide perovskites are challenging the traditional scintillators in the field of radiation detection and radiography. However, they lack the capability for remote and real-time radiation monitoring and imaging in confined and hostile conditions. To address this issue, details on an inorganic scintillating glass fiber incorporating perovskite quantum dots (QDs) as highly efficient pixelated radiation emitters are reported, while the glass fibers themselves serve at the same time as low-loss waveguides, enabling long-distance and underwater X-ray detection.

View Article and Find Full Text PDF

With many fascinating characteristics, such as color-tunability, narrow-band emission, and low-cost solution processability, all-inorganic lead halide perovskite quantum dots (QDs) have attracted keen attention for electroluminescent light-emitting diodes (QLEDs) and display applications. However, the performance of perovskite QLED devices is intrinsically limited by the inefficient electrical carrier transport capacity. Herein, one facile but effective method is proposed to enhance the perovskite QLED performance by incorporating a short carbon chain ligand of 2-phenethylammonium bromide (PEABr) to passivate the CsPbBr QD surface.

View Article and Find Full Text PDF

In this study, the interaction mechanism between Si quantum dots (SiQDs) and bovine serum albumin (BSA), as well as the conformational and functional alterations of BSA, were rigorously investigated via multispectral techniques and dynamic light scattering analysis. van der Waals forces and hydrogen bonding, as well as an exothermic reaction and a decrease in entropy, were the primary forces involved in the binding of SiQDs to BSA. In the binding process, SiQDs exhibit preferential proximity to Site I over other potential binding sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!