A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NADPH oxidase deficiency exacerbates angiotensin II-induced abdominal aortic aneurysms in mice. | LitMetric

NADPH oxidase deficiency exacerbates angiotensin II-induced abdominal aortic aneurysms in mice.

Arterioscler Thromb Vasc Biol

From the Department of Biochemistry (Y.K., T.M., X.-F.L., T.O., J.-r.K.-K., S.T., A.M.) and Department of Anatomy (T.N., S.S.), Showa University School of Medicine, Tokyo, Japan; Center for Biotechnology, Showa University, Tokyo, Japan (T.N.); Division of Endocrinology and Metabolism, Showa University Fujigaoka Hospital, Yokohama, Kanagawa, Japan (Y.K., M.T.); and Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan (T.N.).

Published: November 2014

Objective: Although nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) is reportedly essential for phagocyte host defenses, it has been found to aggravate atherosclerosis in apolipoprotein E (Apoe)-null mice through excess production of superoxide. We therefore assessed the role of NOX2 in an experimental model of abdominal aortic aneurysm (AAA) and assessed the mechanism of NOX2 action in AAA.

Approach And Results: AAA was induced in low-density lipoprotein receptor-null (Ldlr(-/-)) mice by infusing angiotensin II. Nox2 expression was elevated in the abdominal aortae of these mice during infusion of angiotensin II, with enhanced Nox2 expression mainly because of the recruitment of NOX2-enriched macrophages into AAA lesions. Unexpectedly, systemic Nox2 deficiency promoted AAA development but reduced the level of reactive oxygen species in AAA lesions. Nox2 deficiency stimulated macrophage conversion toward the M1 subset, enhancing expression of interleukin (IL)-1β and matrix metalloproteinase-9/12 mRNA. Administration of neutralizing antibody against IL-1β abolished AAA development in Nox2-deficient mice. Bone marrow transplantation experiments revealed that AAA aggravation by Nox2 deficiency is because of bone marrow-derived cells. Isolated bone marrow-derived macrophages from Nox2-null mice could not generate reactive oxygen species. In contrast, IL-1β expression in peritoneal and bone marrow-derived macrophages, but not in peritoneal neutrophils, was substantially enhanced by Nox2 deficiency. Pharmacological inhibition of Janus kinase/signal transducers and activators of transcription signaling inhibited excess IL-1β expression in Nox2-deficient macrophages, whereas matrix metalloproteinase-9 secretion was constitutively stimulated via nuclear factor-κB signals.

Conclusions: Nox2 deficiency enhances macrophage secretion of IL-1β and matrix metalloproteinase-9, disrupting tissue-remodeling functions in AAA lesions. These actions are unfavorable if NOX2 is to serve as a molecular target for AAA.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.114.303086DOI Listing

Publication Analysis

Top Keywords

nox2 deficiency
20
aaa lesions
12
bone marrow-derived
12
nox2
11
aaa
9
abdominal aortic
8
nox2 expression
8
enhanced nox2
8
aaa development
8
reactive oxygen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!