A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA.

Plant Cell Physiol

Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Korea Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Korea

Published: November 2014

Arabidopsis RAV1, RAV1L and RAV2/TEM2 are Related to ABI3/VP1 (RAV) transcription factors that contain both plant-specific B3 and AP2 domains. RAV1 was known to be a negative regulator of growth and its transcript level was repressed by brassinolide (BL). In this study, we found that the expressions of RAV1, and its closest homologs RAV1L and RAV2 were also regulated by other plant hormones, and especially repressed significantly by BL and abscisic acid (ABA), which mediate various abiotic stress responses in plants. Therefore, to further investigate the physiological functions of RAV1, RAV1L and RAV2 in abiotic stress responses, we isolated T-DNA insertional knockout mutants of each gene and produced transgenic plants overexpressing the RAVs. Under normal conditions, each single mutant showed slightly promoted growth patterns only at an early stage of development. In comparison, the RAV1-overexpressing plants exhibited strong growth retardation with semi-dwarfed stature. In drought conditions, RAVs-overexpressing transgenic plants exhibited higher transpirational water loss than the wild type. In salt conditions, seed germination of the RAVs-overexpressing transgenic plants was more inhibited than that of the wild type, while ravs mutants showed promoted seed germination. We also found that RAVs expressions were reduced by dryness and salt. RAV1-overexpressing plants showed the same patterns of increased expression as stress-inducible genes such as RD29A, RD29B and the genes encoding ABA biosynthetic enzymes, as did the wild type and rav1 mutant. However, the RAV1-overexpressing transgenic plants were insensitive to ABA, regardless of the higher accumulation of ABA even in normal conditions. Taken together, these results suggest that RAVs are versatile negative regulators for growth and abiotic stresses, drought and salt, and that negative regulatory effects of RAVs on abiotic stresses are likely to be operated independently of ABA.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcu118DOI Listing

Publication Analysis

Top Keywords

transgenic plants
16
stress responses
12
wild type
12
rav transcription
8
transcription factors
8
drought salt
8
rav1 rav1l
8
rav1l rav2
8
abiotic stress
8
normal conditions
8

Similar Publications

Transgenic tomato strategies targeting whitefly eggs from apoplastic or ovary-directed proteins.

BMC Plant Biol

December 2024

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Background: Transgenic plants expressing proteins that target the eggs of the ubiquitous plant pest Bemisia tabaci (whitefly) could be an effective insecticide strategy. Two approaches for protein delivery are assessed using the mCherry reporter gene in transgenic tomato plants, while accommodating autofluorescence in both the plant, phloem-feeding whitefly and pedicle-attached eggs.

Results: Both transgenic strategies were segregated to homozygous genotype using digital PCR.

View Article and Find Full Text PDF

Comparative transcriptome analysis and heterologous overexpression indicate that the ZjZOG gene may positively regulate the size of jujube fruit.

BMC Plant Biol

December 2024

Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco- economic Woody Plant, Pingdingshan University, Pingdingshan, Henan, 467000, China.

Background: Fruit size is a crucial economic trait that impacts the quality of jujube (Ziziphus jujuba), however, research in this area remains limited. This study utilized two jujube cultivars with similar genetic backgrounds but differing fruit sizes to investigate the regulatory mechanisms affecting fruit size through cytological observations, transcriptome sequencing, and heterologous overexpression.

Results: The findings reveal that variations in mesocarp cell numbers during early fruit development significantly influence final fruit size.

View Article and Find Full Text PDF

Gene targeting (GT) is a powerful tool for manipulating endogenous genomic sequences as intended. However, its efficiency is rather low, especially in seed plants. Numerous attempts have been made to improve the efficiency of GT via the CRISPR/Cas systems in plants, but these have not been sufficiently effective to be used routinely by everyone.

View Article and Find Full Text PDF

The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains.

View Article and Find Full Text PDF

Shoot-Silicon-Signal protein to regulate root silicon uptake in rice.

Nat Commun

December 2024

Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.

Plants accumulate silicon to protect them from biotic and abiotic stresses. Especially in rice (Oryza sativa), a typical Si-accumulator, tremendous Si accumulation is indispensable for healthy growth and productivity. Here, we report a shoot-expressed signaling protein, Shoot-Silicon-Signal (SSS), an exceptional homolog of the flowering hormone "florigen" differentiated in Poaceae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!