Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lotic systems, in particular temporal streams, represent an important proportion of continental waters, but are poorly studied. This is particularly clear in central Mexico, where temporal streams are abundant and remain poor studied despite their great potential for high diversity and the important energy within these ecosystems. The aim of this study was to analyze the environmental variables and scales at which these variables have effects on aquatic insect assemblages in a semiarid fluvial system in Central Mexico. A total of 89 genera were registered, the order Coleoptera showing the highest richness. Peak values for alpha diversity were found on permanent sites in the dry season (1D = 10.63), the more stable environment in permanent streams during the dry season might accounted for this pattern. Assemblages at our study sites showed low similarity (Ij < 0.45) indicating high genera replacement among sites, possibly related to differences in hydroperiod. Partition analysis indicates that variation in genera composition among rivers contributed a large proportion of the diversity (37%). Results from the canonical correspondence analysis point to mesohabitat, velocity, ecological quality, and hydrological order, as the most important variables explaining diversity patterns. In addition, hydrological condition and intermittency were important factors related to diversity (-21-22%). The results suggest that permanent sites function has species sources for intermittent sites, highlighting the need for conservation planning at the landscape level in the Xichu's basin.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!