Stress fractures occurring within the lower limbs are relatively common in athletes and military personnel. The specific bones affected are often predictable when the patient's activities are considered. We present an unusual case of bilateral distal tibial stress fractures sustained while playing as a goalkeeper in field hockey, in an otherwise healthy 46-year-old woman.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154017PMC
http://dx.doi.org/10.1136/bcr-2014-205353DOI Listing

Publication Analysis

Top Keywords

stress fractures
12
bilateral distal
8
distal tibial
8
tibial stress
8
fractures healthy
4
healthy field-hockey
4
field-hockey goalkeeper
4
goalkeeper stress
4
fractures occurring
4
occurring lower
4

Similar Publications

Objectives: To compare the mechanical performance of partially replaced (repaired) intra-coronal restorations to totally replaced ones in root canal-treated teeth.

Methods: Thirty maxillary second premolars were selected according to strict criteria, mounted on moulds, and had mesio-occluso-distal (MOD) cavities prepared. Resin composite restorative material was used to perform the initial restoration, followed by aging procedures using thermo-mechanical cycling fatigue to replicate six months of intraoral aging.

View Article and Find Full Text PDF

In order to investigate the influence of shear on contact characteristics and fluid flow evolution of rough rock fractures, a series of shear-flow tests were carried out by numerical experiments. Firstly, a sandstone specimen with a rough fracture was made in the laboratory, and the numerical model of the fracture was reconstructed in FLAC3D software. Experiments were conducted to investigate the depth of penetration of the fracture under different normal stress (1, 3, and 5 MPa) and shear displacement (2, 4, 6, 8, and 10 mm).

View Article and Find Full Text PDF

Background: Patellar fractures present challenges in treatment, with traditional methods often leading to complications such as loss of reduction and implant failure. This study aimed to compare a novel suture fixation technique with the traditional tension band method using finite element analysis.

Methods: CT images of a healthy 35-year-old male were used to construct 3D patellar models.

View Article and Find Full Text PDF

Mechanical function of the annulus fibrosus is preserved following quasi-static compression resulting in endplate fracture.

Clin Biomech (Bristol)

December 2024

Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada; Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada. Electronic address:

Background: Vertebral fractures in young populations are associated with intervertebral disc disorders later in life. However, damage to the annulus fibrosus has been observed in rapidly loaded spines even without the subsequent occurrence of a fracture. Therefore, it may not be the fracture event that compromises the disc, but rather the manner in which the disc is loaded.

View Article and Find Full Text PDF

Using an interatomic potential that can capture the tetrahedral configuration of water molecules (HO) in ice without the need to explicitly track the motion of the O and H atoms, coarse-grained (CG) atomistic simulations are performed here to characterize the structures, energy, cohesive strengths, and fracture resistance of the grain boundaries (GBs) in polycrystalline ice resulting from water freezing. Taking the symmetric tilt grain boundaries (STGBs) with a tilting axis of ⟨0001⟩ as an example, several main findings from our simulations are (i) the GB energy, , exhibits a strong dependence on the GB misorientation angle, θ. The classical Read-Shockley model only predicts the - θ relation reasonably well when θ < 20° or θ > 45° but fails when 20° < θ < 45°; (ii) two "valleys" appear in the -θ landscape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!