A new method for synthesis of peptide thioesters via irreversible N-to-S acyl transfer.

Org Lett

High Magnetic Field Laboratory, Chinese Academy of Sciences , Hefei 230031, China.

Published: September 2014

A new synthetic method for peptide thioesters is described using Fmoc solid-phase peptide synthesis (Fmoc-SPPS). This method employs a novel enamide motif to facilitate irreversible intramolecular N-to-S acyl migration, which can efficiently afford the desired peptide thioesters (3 h, 30 °C) under the final trifluoroacetic acid (TFA) cleavage conditions. The acyl-transfer-mediated approach for synthesis of peptide thioesters tolerated different C-terminal residues and was used to synthesize human C-C motif chemokine 11 (hCCL11) via native chemical ligation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol5024213DOI Listing

Publication Analysis

Top Keywords

peptide thioesters
16
synthesis peptide
8
n-to-s acyl
8
peptide
5
method synthesis
4
thioesters
4
thioesters irreversible
4
irreversible n-to-s
4
acyl transfer
4
transfer synthetic
4

Similar Publications

Diacylation of Peptides Enables the Construction of Functional Vesicles for Drug-Carrying Liposomes.

Angew Chem Int Ed Engl

January 2025

University of California, San Diego, Chemistry and Biochemistry, 9500 Gilman Drive, Urey Hall 4120, 92093, La Jolla, UNITED STATES OF AMERICA.

Membrane-forming phospholipids are generated in cells by enzymatic diacylation of non-amphiphilic polar head groups. Analogous non-enzymatic processes may have been relevant at the origin of life and could have practical utility in membrane synthesis. However, aqueous head group diacylation is challenging in the absence of enzymes.

View Article and Find Full Text PDF

(1) Background: Since the discovery of antibiotics in the first half of the 20th century, humans have abused this privilege, giving rise to antibiotic-resistant pathogens. Recent research has brought to light the use of antimicrobial peptides in polymers, hydrogels, and nanoparticles (NPs) as a newer and safer alternative to traditional antibiotics. (2) Methods: This review article is a synthesis of the scientific works published in the last 15 years, focusing on the synthesis of polymers with proven antimicrobial properties.

View Article and Find Full Text PDF

Structures and mechanism of condensation in nonribosomal peptide synthesis.

Nature

December 2024

Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, QC, Canada.

Article Synopsis
  • * A critical aspect of NRPS function is the formation of amide bonds between amino acids, a process that has not been fully understood due to its complex nature and the mobile structure of the enzymes involved.
  • * Recent research produced a modified NRPS protein, revealing detailed structures that suggest a concerted reaction mechanism, where a key histidine residue stabilizes the reaction instead of acting as a typical general base.
View Article and Find Full Text PDF

Solid-phase peptide synthesis (SPPS) and native chemical ligation (NCL) are powerful methods for obtaining peptides and proteins that are otherwise inaccessible. Nonetheless, numerous sequences are difficult to prepare via SPPS, and cleaved peptides often have low aqueous solubility. To address these challenges, we developed a "Synthesis Tag" consisting of six arginines connected to the target sequence via a cleavable MeDbz linker.

View Article and Find Full Text PDF

Native chemical ligation (NCL) ligates two unprotected peptides in an aqueous buffer. One of the fragments features a C-terminal α-thioester functional group, and the second bears an N-terminal cysteine. The reaction mechanism depicts two steps: an intermolecular thiol-thioester exchange resulting in a transient thioester, followed by an intramolecular acyl shift to yield the final native peptide bond.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!