Objective: Metabolic pathway alterations in cancer are thought to be dependent upon tumor type-specific oncogenic activation and local nutrient and oxygen supply during disease progression. In serous ovarian cancer, the typical peritoneal spread of disease is caused by shedding of tumor cells into the abdominal cavity, often along with ascites formation. Not much is known about the metabolic features of these detached serous tumor cells. In this study, we investigate the messenger RNA (mRNA) expression of GAPDH (glycolytic glyceraldehyde 3-phosphate dehydrogenase) and PKM2 (pyruvate kinase isoform M2), ATP5B (mitochondrial β-F1-ATPase), and heat shock protein 60 in matched serous solid tumor and corresponding ascites.
Materials/methods: Fresh samples from solid tumor and corresponding ascites were prospectively collected from 40 patients undergoing primary surgery for suspected advanced ovarian cancer. Of these, 25 met the study eligibility criteria, that is, stage IIC to IV disease of the serous (24) or endometrioid (1) subtype with solid and ascites specimens containing 50% or more tumor cells and with good quality and quantity mRNA yield. All but 2 patients (92%) had type II disease. GAPDH, PKM2, ATP5B, and HSP60 mRNA expressions were assessed by real-time polymerase chain reaction. For each marker, the mRNA expression in solid tumor was pairwise compared with the corresponding expression in ascites using the Wilcoxon matched pairs signed rank sum test.
Results: In contrast to our hypothesis, the mRNA expression of analyzed metabolic markers and HSP60 did not significantly differ between matched solid tumor and malignant ascites.
Conclusions: Our results indicate that further expression changes in genes related to glycolysis or oxidative phosphorylation are not a prerequisite for serous cancer cell survival after detachment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/IGC.0000000000000246 | DOI Listing |
JCO Precis Oncol
January 2025
McGill University Faculty of Medicine, Montréal, QC, Canada.
Purpose: MAP2K1/MEK1 mutations are potentially actionable drivers in cancer. MAP2K1 mutations have been functionally classified into three groups according to their dependency on upstream RAS/RAF signaling. However, the clinical efficacy of mitogen-activated protein kinase (MAPK) pathway inhibitors (MAPKi) for MAP2K1-mutant tumors is not well defined.
View Article and Find Full Text PDFJAMA
January 2025
CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy.
Importance: Essential thrombocythemia, a clonal myeloproliferative neoplasm with excessive platelet production, is associated with an increased risk of thrombosis and bleeding. The annual incidence rate of essential thrombocythemia in the US is 1.5/100 000 persons.
View Article and Find Full Text PDFInvest New Drugs
January 2025
School of Life Sciences, Jilin University, Changchun, China.
Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.
View Article and Find Full Text PDFInt J Gynecol Pathol
January 2025
Department of Pathology and Immunology, Washington University.
High-grade serous carcinomas (HGSCs) with homologous recombination deficiency (HRD) respond favorably to platinum therapy and poly ADP ribose polymerase (PARP) inhibitors. Mutations in BRCA1 and BRCA2 commonly cause HRD and have been associated with Solid, pseudoEndometrioid, and Transitional-like (SET-like) histology. Mutations in other homologous recombination repair (HRR) genes as well as epigenetic changes can also result in HRD; however, morphologic correlates have not been well-explored in these cases.
View Article and Find Full Text PDFThyroid
January 2025
Faculty of Medicine and Health, Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia.
Tumor-infiltrating lymphocytes (TILs) are a protective prognostic factor in several solid tumors and predict response to immune checkpoint inhibitor therapy. The prognostic impact of TILs in medullary thyroid cancer (MTC) is poorly understood. In this retrospective cohort study, we assessed the TILs profile of primary MTC tumors using the International TILs Working Group system and correlated this with clinicopathological prognostic variables, including the International Medullary Thyroid Cancer Grading System (IMTCGS) grade and survival outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!