Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is the orientation of second-order contours represented at the population level in macaque V1 and V2? Here we compared the population responses in macaque V1 and V2 to two types of second-order contour stimuli generated either by modulation of contrast or phase reversal with those to first-order contour stimuli. Using intrinsic signal optical imaging, we found that the orientation of second-order contour stimuli was represented invariantly in the orientation columns of both macaque V1 and V2. A physiologically constrained spatio-temporal energy model of V1 and V2 neuronal populations could reproduce all the recorded population responses. These findings suggest that, at the population level, the primate early visual system processes the orientation of second-order contours initially through a linear spatio-temporal filter mechanism. Our results of population responses to different second-order contour stimuli support the idea that the orientation maps in primate V1 and V2 can be described as a spatial-temporal energy map.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154761 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106753 | PLOS |
Front Psychol
January 2025
Department of Behavioral and Cognitive Biology, Vienna CogSciHub, University of Vienna, Vienna, Austria.
Musical melodies and rhythms are typically perceived in a relative manner: two melodies are considered "the same" even if one is shifted up or down in frequency, as long as the relationships among the notes are preserved. Similar principles apply to rhythms, which can be slowed down or sped up proportionally in time and still be considered the same pattern. We investigated whether humans perceiving rhythms and melodies may rely upon the same or similar mechanisms to achieve this relative perception.
View Article and Find Full Text PDFOpen Res Eur
January 2025
Center for Innovative Research and Liaison, Wakayama University, Wakayama, Wakayama Prefecture, Japan.
The purpose of this paper is to make easily available to the scientific community an efficient voice morphing tool called STRAIGHTMORPH and provide a short tutorial on its use with examples. STRAIGHTMORPH consists of a set of Matlab functions allowing the generation of high-quality, parametrically-controlled morphs of an arbitrary number of voice samples. A first step consists in extracting an 'mObject' for each voice sample, with accurate tracking of the fundamental frequency contour and manual definition of Time and Frequency anchors corresponding across samples to be morphed.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands.
Introduction: Global Visual Selective Attention (VSA) is the ability to integrate multiple visual elements of a scene to achieve visual overview. This is essential for navigating crowded environments and recognizing objects or faces. Clinical pediatric research on global VSA deficits primarily focuses on autism spectrum disorder (ASD).
View Article and Find Full Text PDFMethodsX
December 2024
Division of Advanced Materials, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, San Luis Potosí 78216, Mexico.
The analysis of geometrical cell shape is fundamental to understand motility, development, and responses to external stimuli. The moment invariants framework quantifies cellular shape and size, although its applicability has not been explored for rod-shaped bacteria. In this work, we use moment invariants to evaluate the extent of cell shape change (projected area and volume) during plasmolysis, as cells are subjected to hyperosmotic shock.
View Article and Find Full Text PDFPLoS One
November 2024
Centre d'Analyse et de Mathématique Sociales, École des Hautes Études en Sciences Sociales, CNRS, Paris, France.
Sensory systems are permanently bombarded with complex stimuli. Cognitive processing of such complex stimuli may be facilitated by accentuation of important elements. In the case of music listening, alteration of some surface features -such as volume and duration- may facilitate the cognitive processing of otherwise high-level information, such as melody and harmony.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!