Objective: Explore the individual, adolescent phenomeno-logy of quality of life after traumatic brain injury.
Subjects/patients: Adolescent survivors of traumatic brain injury.
Methods: Qualitative interviews with 10 adolescents, mean age at assessment 17.09 years (SD 1.81). Mean time since injury 4.62 years (SD 2.89). Data were analysed using a primarily interpretative phenomenological analysis approach.
Results: Two major findings: (1) perceived quality of life was not automatically impacted by a traumatic brain injury, but when it was, the directionality of impact (positive, negative) varied depending on the life-domain; (2) changes in ability post-traumatic brain injury were attributed to the injury (more often cognitive and physical changes) or to a sense of normal maturation processes (72% and 28%, respectively). Attribution processing permeated themes of personal and social discrepancies, which also yielded themes of: altered family and relationships, roles, responsibilities, independence, coping and post-traumatic growth. All participants reported a happy life at the time of interview.
Conclusion: The adolescents' appraisal of their identity from pre- to post-injury life was related to their current sense of well-being. Most notably was the sense of balance; participants addressed the negative and positive consequences of brain injury to qualify their sense of wellbeing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2340/16501977-1883 | DOI Listing |
Curr Pain Headache Rep
January 2025
Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Entrance 1A, 2600 Glostrup, Copenhagen, Denmark.
Purpose Of Review: To evaluate existing functional magnetic resonance imaging (fMRI) studies on post-traumatic headache (PTH) following traumatic brain injury (TBI).
Recent Findings: We conducted a systematic search of PubMed and Embase databases from inception to February 1, 2024. Eligible fMRI studies were required to include adult participants diagnosed with acute or persistent PTH post-TBI in accordance with any edition of the International Classification of Headache Disorders.
J Neurol
January 2025
Centre for Vestibular Neurology (CVeN), Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK.
Background: Vestibular dysfunction causing imbalance affects c. 80% of acute hospitalized traumatic brain injury (TBI) cases. Poor balance recovery is linked to worse return-to-work rates and reduced longevity.
View Article and Find Full Text PDFWearable Technol
December 2024
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
This work studies upper-limb impairment resulting from stroke or traumatic brain injury and presents a simple technological solution for a subset of patients: a soft, active stretching aid for at-home use. To better understand the issues associated with existing associated rehabilitation devices, customer discovery conversations were conducted with 153 people in the healthcare ecosystem (60 patients, 30 caregivers, and 63 medical providers). These patients fell into two populations: spastic (stiff, clenched hands) and flaccid (limp hands).
View Article and Find Full Text PDFChronic Stress (Thousand Oaks)
January 2025
Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands.
Background: Trauma-focused psychotherapy is treatment of choice for post-traumatic stress disorder (PTSD). However, about half of patients do not respond. Recently, there is increased interest in brain criticality, which assesses the phase transition between order and disorder in brain activity.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
Usona Institute, Fitchburg, Wisconsin 53711-5300, United States.
Innovations in pharmaceutical science drive new treatment approaches for cancer and brain injury. This Patent Highlight reviews findings from three patents focused on kinase inhibition in cancer therapy and using biomarkers to assess brain injury. By targeting key enzymes such as AKT1 and diacylglycerol kinase alpha (DGKα), these innovations offer new strategies for cancer treatment, particularly in cases of resistance to conventional therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!