Rotational spectra of two different structural forms of the 1:1 weak complex between vinyl fluoride (C2H3F) and carbon dioxide were measured using 480 MHz bandwidth chirped-pulse and resonant cavity Fourier-transform microwave spectroscopy in the 5-17 GHz region. Both structures have the CO2 molecule situated in the plane of the vinyl fluoride, such that the CO2 is interacting either with a CHF side or with a HC═CF edge of the vinyl fluoride subunit. Both observed structures are close to those predicted by ab initio geometry optimizations (corrected for basis set superposition error) at the MP2/6-311++G(2d,2p) level. Dipole moment measurements and structural fits, including determinations of principal axis coordinates for all three carbon atoms, confirm the geometries of the assigned species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp507869y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!