Functional Magnetic Resonance Imaging (fMRI) based brain connectivity analysis maps the functional networks of the brain by estimating the degree of synchronous neuronal activity between brain regions. Recent studies have demonstrated that "resting-state" fMRI-based brain connectivity conclusions may be erroneous when motion artifacts have a differential effect on fMRI BOLD signals for between group comparisons. A potential explanation could be that in-scanner displacement, due to rotational components, is not spatially constant in the whole brain. However, this localized nature of motion artifacts is poorly understood and is rarely considered in brain connectivity studies. In this study, we initially demonstrate the local correspondence between head displacement and the changes in the resting-state fMRI BOLD signal. Than, we investigate how connectivity strength is affected by the population-level variation in the spatial pattern of regional displacement. We introduce Regional Displacement Interaction (RDI), a new covariate parameter set for second-level connectivity analysis and demonstrate its effectiveness in reducing motion related confounds in comparisons of groups with different voxel-vise displacement pattern and preprocessed using various nuisance regression methods. The effect of using RDI as second-level covariate is than demonstrated in autism-related group comparisons. The relationship between the proposed method and some of the prevailing subject-level nuisance regression techniques is evaluated. Our results show that, depending on experimental design, treating in-scanner head motion as a global confound may not be appropriate. The degree of displacement is highly variable among various brain regions, both within and between subjects. These regional differences bias correlation-based measures of brain connectivity. The inclusion of the proposed second-level covariate into the analysis successfully reduces artifactual motion-related group differences and preserves real neuronal differences, as demonstrated by the autism-related comparisons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154676PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104947PLOS

Publication Analysis

Top Keywords

brain connectivity
16
motion artifacts
12
connectivity analysis
12
resting-state fmri
8
brain
8
brain regions
8
fmri bold
8
group comparisons
8
regional displacement
8
nuisance regression
8

Similar Publications

Aim: To provide a theoretical basis for the study of the pathogenesis of residual dizziness (RD) from the perspective of imaging.

Materials And Methods: The general clinical data of the RD group and healthy control (HC) group were statistically analysed by two independent sample t tests, rank sum tests or chi-square tests. The imaging data of the two groups of people were preprocessed and statistically analysed by using the data processing and analysis for brain imaging (DPABI) software package.

View Article and Find Full Text PDF

Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm.

View Article and Find Full Text PDF

Resective epilepsy surgery can be an effective treatment for patients with medication-resistant focal epilepsy. Epilepsy resection consists of the surgical removal of an epileptic focus to stop seizure generation and disrupt the epileptic network. However, even focal surgical resections for epilepsy lead to widespread brain network changes.

View Article and Find Full Text PDF

Abnormal resting-state brain network dynamics in toddlers with autism spectrum disorder.

Eur Child Adolesc Psychiatry

January 2025

National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.

Emerging evidence suggests aberrant functional connectivity (FC) of brain networks in children, adolescents, and adults with autism spectrum disorder (ASD). However, little is known about alterations of dynamic FC in toddlers with ASD. The aim of this study was to investigate the characteristics of brain network dynamics in ASD toddlers.

View Article and Find Full Text PDF

Neural cue reactivity and intrinsic functional connectivity in individuals with alcohol use disorder following treatment with topiramate or naltrexone.

Psychopharmacology (Berl)

January 2025

Edith Collins Centre for Translational Research in Alcohol, Drugs and Toxicology, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia.

Rationale: Both topiramate and naltrexone have been shown to affect neural alcohol cue reactivity in alcohol use disorder (AUD). However, their comparative effects on alcohol cue reactivity are unknown. Moreover, while naltrexone has been found to normalize hyperactive localized network connectivity implicated in AUD, no studies have examined the effect of topiramate on intrinsic functional connectivity or compared functional connectivity between these two widely used medications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!