CaMKII binding to GluN2B is important for massed spatial learning in the Morris water maze.

F1000Res

Department of Pharmacology, School of Medicine, University of California, Davis, 95616-8636, USA.

Published: September 2014

Learning and memory as well as long-term potentiation (LTP) depend on Ca (2+) influx through the NMDA-type glutamate receptor (NMDAR) and the resulting activation of the Ca (2+) and calmodulin-dependent protein kinase (CaMKII). Ca (2+) influx via the NMDAR triggers CaMKII binding to the NMDAR for enhanced CaMKII accumulation at post-synaptic sites that experience heightened activity as occurring during LTP. Previously, we generated knock-in (KI) mice in which we replaced two residues in the NMDAR GluN2B subunit to impair CaMKII binding to GluN2B. Various forms of LTP at the Schaffer collateral synapses in CA1 are reduced by 50%. Nevertheless, working memory in the win-shift 8 arm maze and learning of the Morris water maze (MWM) task was normal in the KI mice although recall of the task was impaired in these mice during the period of early memory consolidation. We now show that massed training in the MWM task within a single day resulted in impaired learning. However, learning and recall of the Barnes maze task and contextual fear conditioning over one or multiple days were surprisingly unaffected. The differences observed in the MWM compared to the Barnes maze and contextual fear conditioning suggest a differential involvement of CaMKII and the specific interaction with GluN2B, probably depending on varying degrees of stress, cognitive demand or even potentially different plasticity mechanisms associated with the diverse tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149248PMC
http://dx.doi.org/10.12688/f1000research.4660.1DOI Listing

Publication Analysis

Top Keywords

camkii binding
12
binding glun2b
8
learning morris
8
morris water
8
water maze
8
maze learning
8
mwm task
8
barnes maze
8
contextual fear
8
fear conditioning
8

Similar Publications

Selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 as a rapid-acting therapy for advanced acute liver failure.

Nat Commun

December 2024

Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China.

Acute liver failure (ALF) is a hepatology emergency with rapid hepatic destruction, multiple organ failures, and high mortality. Despite decades of research, established ALF has minimal therapeutic options. Here, we report that the small bioactive compound SCM-198 increases the survival of male ALF mice to 100%, even administered 24 hours after ALF establishment.

View Article and Find Full Text PDF

Background: Alternative splicing is a fundamental mechanism in the post-transcriptional regulation of genes. The multifunctional transmembrane glycoprotein receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) undergoes extensive alternative splicing to allow for tunable functions in cell signalling, adhesion and modulation of immune and metabolic responses. Splice isoforms that differ in their ectodomain and short or long cytoplasmic tail (CEACAM1-S/CEACAM1-L) have distinct functional roles.

View Article and Find Full Text PDF

Fulvic acid inhibits the differentiation of 3T3-L1 adipocytes by activating the Ca/CaMKⅡ/AMPK pathway.

Biochem Biophys Res Commun

January 2025

Department of Physiology, Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Republic of Korea. Electronic address:

Type 2 diabetes increases the risk of developing obesity. Although fulvic acid alleviates back fat thickness in pigs, the mechanism underlying its anti-obesity effect remains unclear. Therefore, we investigated the anti-obesity mechanism of fulvic acid using 3T3-L1 adipocytes.

View Article and Find Full Text PDF

Mitochondrial metabolic reprogramming of macrophages and T cells enhances CD47 antibody-engineered oncolytic virus antitumor immunity.

J Immunother Cancer

December 2024

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China

Article Synopsis
  • CD47 antibody-engineered oncolytic viruses (oAd-αCD47) were used to improve immune responses against tumors, but the effect of an acidic tumor microenvironment (TME) on this treatment was unexplored.
  • Researchers employed various techniques to assess how oAd-αCD47 interacts with the TME, identifying sodium bicarbonate (NaBi) as a key agent that enhances antitumor effects in that challenging environment.
  • The combination of NaBi and oAd-αCD47 significantly inhibited tumor growth in mouse models by altering immune cell ratios and improving metabolic functions, leading to a more robust immune response against tumors.
View Article and Find Full Text PDF

Background: Rotator cuff tears (RCTs) are among the most common musculoskeletal disorders that affect quality of life. This study aimed to investigate the efficacy of ginsenoside Rb1 in RCTs and the mechanisms involved.

Methods: First, a fibrotic model of FAPs was induced, and FAPs were cultured in media supplemented with different concentrations of ginsenoside Rb1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!