Arbidol (ARB) is an antiviral drug that has broad-spectrum activity against a number of viral infections. To date, there are no specific data regarding its effects against a herpesvirus. Here, the in vitro antiviral effect of ARB and structurally related derivatives were evaluated in HaCat cells on different steps of herpes simplex virus type 1 replication: adsorption, entry and post-entry. The simplified pyrrolidine analogue, 9a2, showed the best antiviral activity in vitro by reducing the plaque numbers by about 50% instead of 42% obtained with ARB at the same concentration. Furthermore, we have reported that all tested compounds evaluated for their immunomodulatory activity showed the ability to reduce the viral proteins VP16 and ICP27 and to modify the virus-induced cytokine expression, allowing the host cell a more efficient antiviral response.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.076612-0DOI Listing

Publication Analysis

Top Keywords

vitro antiviral
8
immunomodulatory activity
8
structurally derivatives
8
herpes simplex
8
simplex virus
8
virus type
8
antiviral immunomodulatory
4
activity
4
activity arbidol
4
arbidol structurally
4

Similar Publications

Tick salivary cystatin Iristatin limits the virus replication in skin of tick-borne encephalitis virus-infected mice.

Parasitol Res

January 2025

Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.

Tick-borne encephalitis virus (TBEV) is flavivirus transmitted to the host via tick saliva which contains various molecules with biological impacts. One of such molecules is Iristatin, a cysteine protease inhibitor from Ixodes ricinus that has been shown to have immunomodulatory properties. To characterize Iristatin in the relation to TBEV, we investigate whether this tick inhibitor has any capacity to influence TBEV infection.

View Article and Find Full Text PDF

Sjögren's syndrome (SS) is a prevalent systemic autoimmune disease with substantial impacts on women's health worldwide. Although oral Haemophilus parainfluenzae is reduced in SS, its significance remains unclear. This study aimed to elucidate the pathophysiological role of H.

View Article and Find Full Text PDF

Azvudine and nirmatrelvir-ritonavir (Paxlovid) were widely used to treat patients with COVID-19 in China during the Omicron wave. However, the efficacy and safety of azvudine versus Paxlovid are poorly established. This study included 40,876 hospitalized patients with COVID-19 from eleven hospitals in Henan and Xinjiang Provinces, China.

View Article and Find Full Text PDF

Crucial role of the cGAS N terminus in mediating flowable and functional cGAS-DNA condensate formation via DNA interactions.

Proc Natl Acad Sci U S A

January 2025

Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science Interdisciplinary Science & Biomedicine of Institute of Health and Medicine, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China.

The DNA-sensing protein cGAS plays a pivotal role in the innate immune response and pathogenesis of various diseases. DNA triggers liquid-liquid phase separation (LLPS) and enhances the enzymatic activity of cGAS. However, the regulatory mechanisms of the disordered N terminus remain unclear.

View Article and Find Full Text PDF

Discovery of a heparan sulfate binding domain in monkeypox virus H3 as an anti-poxviral drug target combining AI and MD simulations.

Elife

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!