Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Micelles can be formed from coenzyme Q10 (CoQ10) and dipotassium glycyrrhizate (GZK2) by using an inclusion complex of CoQ10 with γ-cyclodextrin (γ-CD). The mechanism of micelle formation was kinetically investigated. Adding GZK2 to a supersaturated solution of the CoQ10/γ-CD inclusion complex led to a linear increase in the solubility of CoQ10 due to the formation of micelles of CoQ10 when the molar ratio of GZK2/γ-CD increased to ∼1.6, after which the concentration remained constant. The equilibrium constant K for micelle formation was 0.68 (-) and the ratio of GZK2 to CoQ10 was 1. These results suggest that the formation of CoQ10 micelles with GZK2 might proceed via the displacement of CoQ10 by GZK2 in the γ-CD cavity followed by the formation of CoQ10 micelles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp5065165 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!