In this work it has been established that 3D nanoflowers of WS2 synthesised by chemical vapour deposition are composed of few layer WS2 along the edges of the petals. An experimental study in order to understand the evolution of these nanostructures shows the nucleation and growth along with the compositional changes they undergo.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cc04218bDOI Listing

Publication Analysis

Top Keywords

ws₂ nanosheets
4
nanosheets nanoflowers
4
nanoflowers work
4
work established
4
established nanoflowers
4
nanoflowers ws2
4
ws2 synthesised
4
synthesised chemical
4
chemical vapour
4
vapour deposition
4

Similar Publications

Controlling crystal planes of biomass-derived carbon based Mo2C NPs and the electrochemical performance.

J Chem Phys

January 2025

College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, People's Republic of China.

The electrochemical property of Mo2C nanoparticles (NPs) depends on the structure and crystal planes. Herein, Mo2C nanoparticles were prepared and dispersed on carbon nanosheets by the construction of a biomass-derived carbon precursor, and the exposed dual crystal planes were also controlled by optimal conditions. The structure, compositions, and morphology of the carbon-based Mo2C were characterized, and the Mo2C NPs were well dispersed on the carbon nanosheets.

View Article and Find Full Text PDF

Synthesis of 2D NiCo-MOF/GO/CNTs flexible films for high-performance supercapacitors.

Soft Matter

January 2025

Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.

Flexible two-dimensional nickel-cobalt metal-organic frameworks/graphene oxide/carbon nanotubes (2D NiCo-MOF/GO/CNTs) hybrid films have been designed and prepared as high-performance supercapacitor electrode materials vacuum filtration. The 2D NiCo-MOF nanosheets serve as the main source of capacitance for the hybrid films, while CNTs function as both the conductive network, enhancing the electrical conductivity of the MOFs, and the binder, linking the 2D NiCo-MOF nanosheets and GO. When the mass ratio of 2D NiCo-MOF, GO, and CNTs is 2 : 1 : 0.

View Article and Find Full Text PDF

Exfoliation of triazole-based CN, CN, and CN nanosheets for efficient photocatalytic ammonia production.

Nanoscale

January 2025

Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.

Atomically thin two-dimensional nanosheets of nitrogen-rich CN, CN, and CN are synthesized by sonochemical process. Despite their high nitrogen content, their triazole-based crystal structures remain intact after exfoliation. Among the present materials, the nitrogen-richest CN nanosheets display the highest photocatalytic activity for ammonia production, highlighting the synergetic effect of composition control and exfoliation.

View Article and Find Full Text PDF

Symmetry Breaking in Twisted Mixed-Dimensional Heterostructure Interfaces for Multifunctional Polarization-Sensitive Photodetection.

ACS Nano

January 2025

Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China.

Moiré superlattices, created by stacking different van der Waals materials at twist angles, have emerged as a versatile platform for exploring intriguing phenomena such as topological properties, superconductivity, the quantum anomalous Hall effect, and the unconventional Stark effect. Additionally, the formation of moiré superlattice potential can generate spontaneous symmetry breaking, leading to an anisotropic optical response and electronic transport behavior. Herein, we propose a two-step chemical vapor deposition (CVD) strategy for synthesizing WS/SbS moiré superlattices.

View Article and Find Full Text PDF

Highly Efficient Photocatalytic HO Production under Ambient Conditions via Defective InS Nanosheets.

Langmuir

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Oxygen and water generating hydrogen peroxide (HO) by optical drive is an extremely promising pathway, and the large amount of oxygen in air and natural sunlight illumination are excellent catalytic conditions. However, the separation efficiency of photogenerated electron-hole pairs greatly limits the photocatalytic efficiency, especially in the absence of sacrificial agents. Here, we report an InS nanosheet with an S vacancy (S-InS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!