Competitive mode and site of interaction of ticagrelor at the human platelet P2Y12 -receptor.

J Thromb Haemost

Pharma Center Bonn, Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany.

Published: November 2014

Background: The G-protein-coupled P2Y12 -receptor plays a crucial role in platelet aggregation. Recently, ticagrelor was licensed as the first perorally active and reversible P2Y12 -receptor antagonist.

Objective: The present study investigated the site and the antagonistic mode of action of ticagrelor at wild-type or mutant human P2Y12 -receptors.

Methods: Recombinant wild-type or mutant human P2Y12 -receptors were stably expressed in Chinese hamster ovary Flp-In cells. Receptor function was assessed by quantification of ADP- and 2-methylthio-ADP-mediated inhibition of forskolin-induced cellular cAMP production either using a [(3) H]cAMP-radioaffinity assay or a cAMP response element-driven luciferase reporter gene assay.

Results: The natural agonist ADP inhibited forskolin-induced cAMP formation at the wild-type P2Y12 -receptor with a lower potency (EC50 209 nm) than the synthetic agonist 2-methylthio-ADP (EC50 1.0 nm). Ticagrelor shifted the concentration-response curves of both agonists in a parallel and surmountable manner to the right. Increasing concentrations of ticagrelor caused increasing shifts. Schild-plot analysis revealed pA2 values of 8.85 for ticagrelor against ADP, and 8.69 against 2-methylthio-ADP, and slopes of the regression lines not different from unity. In cells expressing a recombinant C194A(5.43) -mutant P2Y12 -receptor construct, ticagrelor lost antagonistic potency when tested against ADP or 2-methylthio-ADP.

Conclusions: The experiments reveal a surmountable and competitive mode of antagonism of ticagrelor at P2Y12 -receptors activated by either the natural agonist ADP or the synthetic agonist 2-methylthio-ADP. Cys194(5.43) is likely to be involved in the interaction of ticagrelor with ADP and 2-methylthio-ADP. The data give new insights into the site and mode of action of ticagrelor at the human P2Y12 -receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jth.12719DOI Listing

Publication Analysis

Top Keywords

p2y12 -receptor
24
human p2y12
12
ticagrelor
10
p2y12
9
competitive mode
8
interaction ticagrelor
8
ticagrelor human
8
mode action
8
action ticagrelor
8
wild-type mutant
8

Similar Publications

Intra-abdominal sepsis is a life-threatening complex syndrome caused by microbes in the gut microbiota invading the peritoneal cavity. It is one of the major complications of intra-abdominal surgery. To date, only supportive therapies are available.

View Article and Find Full Text PDF

Microglia and the border-associated macrophages contribute to the modulation of cerebral blood flow, but the mechanisms have remained uncertain. Here, we show that microglia regulate the cerebral blood flow baseline and the responses to whisker stimulation or intra-cisternal magna injection of adenosine triphosphate, but not intra-cisternal magna injection of adenosine in mice model. Notably, microglia repopulation corrects these cerebral blood flow anomalies.

View Article and Find Full Text PDF

For almost two decades, dual antiplatelet therapy (DAPT) has been considered the cornerstone of pharmacological treatment in patients undergoing percutaneous coronary intervention (PCI). DAPT composition and duration have considerably evolved in the last decade moving from fixed treatment durations to tailored strategies based on the individual ischemic and bleeding risks. The increasing awareness of the prognostic relevance of bleeding events after PCI and the need for tailoring DAPT according to the individual bleeding and ischemic risks paved the way to newer DAPT modulation strategies by early aspirin withdrawal which have been shown to decrease bleeding without affecting therapeutic efficacy.

View Article and Find Full Text PDF

CYP2C19 Genotype-Guided Antiplatelet Therapy and Clinical Outcomes in Patients Undergoing a Neurointerventional Procedure.

Clin Transl Sci

January 2025

Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

In neurovascular settings, including treatment and prevention of ischemic stroke and prevention of thromboembolic complications after percutaneous neurointerventional procedures, dual antiplatelet therapy with a P2Y12 inhibitor and aspirin is the standard of care. Clopidogrel remains the most commonly prescribed P2Y12 inhibitor for neurovascular indications. However, patients carrying CYP2C19 no-function alleles have diminished capacity for inhibition of platelet reactivity due to reduced formation of clopidogrel's active metabolite.

View Article and Find Full Text PDF

Most Kunitz inhibitors exhibit serine protease inhibitory activity, but limited information is available on the regulation of platelet function. Herein, we report the purification and characterization of a novel single Kunitz domain inhibitor (Sibanin) from the salivary glands of the black fly Simulium bannaense. Recombinant Sibanin prolonged activated partial thromboplastin time and prothrombin time, and exhibited high-affinity binding to FXa and elastase with a KD of 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!