Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Analyses of pairwise relatedness represent a key component to addressing many topics in biology. However, such analyses have been limited because most available programs provide a means to estimate relatedness based on only a single estimator, making comparison across estimators difficult. Second, all programs to date have been platform specific, working only on a specific operating system. This has the undesirable outcome of making choice of relatedness estimator limited by operating system preference, rather than being based on scientific rationale. Here, we present a new R package, called related, that can calculate relatedness based on seven estimators, can account for genotyping errors, missing data and inbreeding, and can estimate 95% confidence intervals. Moreover, simulation functions are provided that allow for easy comparison of the performance of different estimators and for analyses of how much resolution to expect from a given data set. Because this package works in R, it is platform independent. Combined, this functionality should allow for more appropriate analyses and interpretation of pairwise relatedness and will also allow for the integration of relatedness data into larger R workflows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.12323 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!