Galaxies congregate in clusters and along filaments, and are missing from large regions referred to as voids. These structures are seen in maps derived from spectroscopic surveys that reveal networks of structure that are interconnected with no clear boundaries. Extended regions with a high concentration of galaxies are called 'superclusters', although this term is not precise. There is, however, another way to analyse the structure. If the distance to each galaxy from Earth is directly measured, then the peculiar velocity can be derived from the subtraction of the mean cosmic expansion, the product of distance times the Hubble constant, from observed velocity. The peculiar velocity is the line-of-sight departure from the cosmic expansion and arises from gravitational perturbations; a map of peculiar velocities can be translated into a map of the distribution of matter. Here we report a map of structure made using a catalogue of peculiar velocities. We find locations where peculiar velocity flows diverge, as water does at watershed divides, and we trace the surface of divergent points that surrounds us. Within the volume enclosed by this surface, the motions of galaxies are inward after removal of the mean cosmic expansion and long range flows. We define a supercluster to be the volume within such a surface, and so we are defining the extent of our home supercluster, which we call Laniakea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature13674 | DOI Listing |
Nat Commun
December 2024
Astronomical Institute, Czech Academy of Sciences, Boční II 1401, Prague, 141 00, Czech Republic.
High-velocity stars and peculiar G objects orbit the central supermassive black hole (SMBH) Sagittarius A* (Sgr A*). Together, the G objects and high-velocity stars constitute the S cluster. In contrast with theoretical predictions, no binary system near Sgr A* has been identified.
View Article and Find Full Text PDFLangmuir
December 2024
Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Application, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
Gas transport through nanochannels has aroused significant interest in many fields. Recently, "ballistic transport" of gas was observed through a two-dimensional graphene nanochannel, and it causes a peculiar enhancement compared to the predictions of the Knudson theory. Many studies attributed this effect to the specular reflection caused by the atomically smooth surface of the channel.
View Article and Find Full Text PDFPhys Rev E
September 2024
Leibniz-Institut of Polymer Research Dresden, 01069 Dresden, Germany and Institute for Theoretical Physics, TU Dresden, Zellescher Weg 13, Germany.
Nanoparticles (NPs) that are forcefully driven through a brush-decorated nanochannel form a nonequilibrium system with a rich physical behavior, including a dynamical phase transition between two modes of propagation that correspond to either separate clusters of NPs or a continuous flow channel. The peculiar properties of this system make it an ideal benchmark candidate for a comparison of three thermostat settings, the dissipative particle dynamics (DPD), the Langevin (LGV) dynamics, and a modified LGV setup, denoted as LGV^{-}, in which the thermostatting is disabled in the direction of the driving force. We demonstrate that the choice of the thermostat has little influence on the conformations of NPs, and that, due to differences in the dissipation modes, notable differences arise in their dynamical properties, such as effective friction constants and average velocities.
View Article and Find Full Text PDFNat Astron
April 2024
Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland.
Pluto's surface is dominated by the huge, pear-shaped basin Sputnik Planitia. It appears to be of impact origin, but modelling has not yet explained its peculiar geometry. We propose an impact mechanism that reproduces its topographic shape while also explaining its alignment near the Pluto-Charon axis.
View Article and Find Full Text PDFJ Chem Phys
May 2024
School of Science, Southwest University of Science and Technology, Mianyang 621010, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!