It has been reported that dietary gangliosides may have an important role in preventing infections and in brain development during early infancy. However, data related to the evolution of their concentration over the different stages of lactation are scarce. Liquid chromatography coupled with electrospray ionization high resolution mass spectrometer (LC/ESI-HR-MS) has been optimized to quantify the two major ganglioside classes, i.e., aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer (GD3) and aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer (GM3) in human milk. Gangliosides were extracted using chloroform and methanol, further purified by solid-phase extraction and separated by reversed-phase liquid chromatography. Repeatability, intermediate reproducibility, and recovery values were assessed to validate the method. In human milk, GD3 and GM3 could be quantified at the level of 0.1 and 0.2 μg/mL, respectively, with relative standard deviation of repeatability [CV(r)] and intermediate reproducibility [CV(iR)] values ranging from 1.9 to 15.0 % and 1.9 to 22.5 %, respectively. The described method was used to quantify GD3 and GM3 in human milk samples collected from 450 volunteers between 0 and 11 days and at 30, 60 and 120 days postpartum, providing for the first time the concentration of these minor lipids in a large cohort. The content of total gangliosides ranged from 8.1 and 10.7 μg/mL and the mean intake of gangliosides in infants 30, 60 and 120 days postpartum could be estimated at about 5.5, 7.0 and 8.6 mg of total gangliosides per day, respectively, when infants were exclusively breastfed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173068PMC
http://dx.doi.org/10.1007/s11745-014-3943-2DOI Listing

Publication Analysis

Top Keywords

human milk
16
evolution concentration
8
liquid chromatography
8
gm3 human
8
intermediate reproducibility
8
gd3 gm3
8
120 days
8
days postpartum
8
total gangliosides
8
gangliosides
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!