New iridium catalysts for the selective alkylation of amines by alcohols under mild conditions and for the synthesis of quinolines by acceptor-less dehydrogenative condensation.

Chemistry

Lehrstuhl Anorganische Chemie II (Catalyst Design), Universität Bayreuth, Universitätsstrasse 30, NW I, 95440 Bayreuth (Germany), Fax: (+49) 921552157.

Published: October 2014

A novel family of iridium catalysts stabilised by P,N-ligands have been introduced. The ligands are based on imidazo[1,5-b]pyridazin-7-amines and can be synthesised with a broad variety of substitution patterns. The catalysts were synthesised quantitatively from the protonated ligands and a commercially available iridium precursor. The catalysts mediate the alkylation of amines by alcohols under mild conditions (70 °C). In addition, the synthesis of quinolines from secondary or primary alcohols and amino alcohols is reported. This sustainable synthesis proceeds through the liberation of two equivalents of water and two equivalents of dihydrogen. The investigations indicate that catalysts suitable for hydrogen autotransfer or borrowing hydrogen chemistry might also be suitable for acceptor-less dehydrogenative condensation reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201402952DOI Listing

Publication Analysis

Top Keywords

iridium catalysts
8
alkylation amines
8
amines alcohols
8
alcohols mild
8
mild conditions
8
synthesis quinolines
8
acceptor-less dehydrogenative
8
dehydrogenative condensation
8
catalysts selective
4
selective alkylation
4

Similar Publications

Recently, cobalt-based oxides have received considerable attention as an alternative to expensive and scarce iridium for catalyzing the oxygen evolution reaction (OER) under acidic conditions. Although the reported materials demonstrate promising durability, they are not entirely intact, calling for fundamental research efforts to understand the processes governing the degradation of such catalysts. To this end, this work studies the dissolution mechanism of a model CoO porous catalyst under different electrochemical conditions using online inductively coupled plasma mass spectrometry (online ICP-MS), identical location scanning transmission electron microscopy (IL-STEM), and differential electrochemical mass spectrometry (DEMS).

View Article and Find Full Text PDF

Rationally manipulating the in-situ formed catalytically active surface of catalysts remains a significant challenge for achieving highly efficient water electrolysis. Herein, we present a bias-induced activation strategy to modulate in-situ Ga leaching and trigger the dynamic surface restructuring of lamellar Ir@Ga2O3 for the electrochemical oxygen evolution reaction. The in-situ reconstructed Ga-O-Ir interface sustains high water oxidation rates at OER overpotentials.

View Article and Find Full Text PDF

Catalytic H/D exchange of (hetero)arenes with early-late polyhydride heterobimetallic complexes: impact of transition metal pairs.

Dalton Trans

January 2025

Laboratory of Catalysis, Polymerization, Processes and Materials (CP2 M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.

Metal-catalyzed hydrogen isotope exchange (HIE) has become a valuable method for incorporating deuterium and tritium into organic molecules, with applications in a wide range of scientific fields. This study explores the role of transition metal cooperativity in enhancing catalytic hydrogen/deuterium (H/D) exchange using early-late heterobimetallic polyhydride (ELHB) complexes. A series of four ELHB complexes, of general formula [M(CHBu)(H)M'Cp*], combining early transition metals (M = Hf, Ta) with late metals (M' = Ir, Os), were synthesized and evaluated for their catalytic activity in HIE of (hetero)arenes.

View Article and Find Full Text PDF

The development of efficient and durable oxygen evolution reaction (OER) catalysts is crucial for advancing proton exchange membrane water electrolysis (PEMWE) technology, especially in the pursuit of non-iridium alternatives. Herein, we report a Zn, W co-doping Ru3Zn0.85W0.

View Article and Find Full Text PDF

Chemical design of metal complexes for electrochemical water oxidation under acidic conditions.

Dalton Trans

January 2025

National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.

The development of viable, stable, and highly efficient molecular water oxidation catalysts under acidic aqueous conditions (pH < 7) is challenging with Earth-abundant metals in the field of renewable energy due to their low stability and catalytic activity. The utilization of these catalysts is generally considered more cost-effective and sustainable relative to conventional catalysts relying on precious metals such as ruthenium and iridium, which exhibit outstanding activities. Herein, we discussed the effectiveness of transition metal complexes for electrocatalytic water oxidation under acidic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!