Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery.

Med Phys

Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, Legaria 694, México City 11500, México.

Published: September 2014

Purpose: To assess the impact of the detector used to commission small photon beams on the calculated dose distribution in stereotactic radiosurgery (SRS).

Methods: In this study, six types of detectors were used to characterize small photon beams: three diodes [a silicon stereotactic field diode SFD, a silicon diode SRS, and a silicon diode E], an ionization chamber CC01, and two types of radiochromic film models EBT and EBT2. These detectors were used to characterize circular collimated beams that were generated by a Novalis linear accelerator. This study was conducted in two parts. First, the following dosimetric data, which are of particular interest in SRS, were compared for the different detectors: the total scatter factor (TSF), the tissue phantom ratios (TPRs), and the off-axis ratios (OARs). Second, the commissioned data sets were incorporated into the treatment planning system (TPS) to compare the calculated dose distributions and the dose volume histograms (DVHs) that were obtained using the different detectors.

Results: The TSFs data measured by all of the detectors were in good agreement with each other within the respective statistical uncertainties: two exceptions, where the data were systematically below those obtained for the other detectors, were the CC01 results for all of the circular collimators and the EBT2 film results for circular collimators with diameters below 10.0 mm. The OAR results obtained for all of the detectors were in excellent agreement for all of the circular collimators. This observation was supported by the gamma-index test. The largest difference in the TPR data was found for the 4.0 mm circular collimator, followed by the 10.0 and 20.0 mm circular collimators. The results for the calculated dose distributions showed that all of the detectors passed the gamma-index test at 100% for the 3 mm/3% criteria. The aforementioned observation was true regardless of the size of the calculation grid for all of the circular collimators. Finally, the dose volume histogram results were independent of the size of the calculation grid used.

Conclusions: The results of this study showed that all of the studied detectors produced similar commissioned data sets for the TPS dose calculations. However, this result only validated the dose distribution calculation in the TPS and could not be used to assess the dose delivery to the target in which the TFS data were used to calculate the monitor units (the TFS data were not used in the TPS dose distribution calculation). Therefore, this study could not be used to determine the most accurate detector commissioning data set; however, all of the detectors exhibited superior performance for the relative dosimetry of small photon beams.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.4892176DOI Listing

Publication Analysis

Top Keywords

circular collimators
20
small photon
16
photon beams
16
calculated dose
16
dose distribution
16
dose
10
detectors
9
data
9
beams calculated
8
distribution stereotactic
8

Similar Publications

A spectroradiometer serves as a powerful instrument for measuring the spectral radiance of a target. The spectral radiance calibration function determines the measurement accuracy of the spectroradiometer. However, the general full-field calibration method results in higher spectral radiance values when dealing with targets that only partially fill the field of view (FOV).

View Article and Find Full Text PDF

Fiber-Optic Photoacoustic Gas Microprobe Based on Linear Spot-Type Multipass Cell.

Anal Chem

January 2025

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.

A linear spot-type multipass cell-enhanced fiber-optic photoacoustic gas microprobe is proposed. To further reduce the volume of the gas chamber and enhance the photoacoustic signal, we designed the cross section of the photoacoustic tube as a slit with a height of 10 mm and a width of 1.5 mm.

View Article and Find Full Text PDF

Mapping the local ambidextrous chirality in thin films of N phase by circular dichroism spectra.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, University of Hull, Hull HU6 7RX, UK. Electronic address:

Circular dichroism mapping (CDM) method was introduced by utilizing the highly collimated light beam of synchrotron radiation (SR) available at Diamond Light Source B23 beamline for scanning the thin films of the N phase. We apply SR-CDM to two achiral dimeric materials exhibiting the N phase: symmetric DTC5C9 and dissymmetric DTC5C9CB. The SR-CDM measurements directly capture the chiral information in the local N domains, providing the ultimate complement to the theoretical predictions of the helical structures: the spontaneous symmetry breaking in N phase is ambidextrous.

View Article and Find Full Text PDF
Article Synopsis
  • The miniaturization of optical systems is essential for applications like augmented reality and micro sensors, but traditional bulky optical elements hinder progress.* -
  • A new multifunctional metasurface (MFMS) integrates a lens, prism, and quarter-wave plate into a thin element, allowing for collimation, beam deflection, and polarization conversion.* -
  • The MFMS demonstrates impressive performance, achieving high diffraction efficiency and polarization conversion, making it suitable for compact atomic clocks and efficient light focusing.*
View Article and Find Full Text PDF

3D in-system calibration method for PET detectors.

Med Phys

January 2025

Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.

Background: Light-sharing detector designs for positron emission tomography (PET) systems have sparked interest in the scientific community. Particularly, (semi-)monoliths show generally good performance characteristics regarding 2D positioning, energy-, and timing resolution, as well as readout area. This is combined with intrinsic depth-of-interaction (DOI) capability to ensure a homogeneous spatial resolution across the entire field of view (FoV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!