Probiotics got protective effects on the intestinal barrier. Our present study is to review the basic and clinical progress on the regulation of the intestinal barrier by Lactobacillus and its active protein components, combing the study of our center. Our study have isolated the active component of micro integral membrane protein (MIMP) within the media place of the integral membrane protein of Lactobacillus plantarum, which was verified about the protective effects against the intestinal epithelial dysfunction. On the other hand, we also found the effects of perioperative use of probiotics in the prevention and treatment of postoperative intestinal barrier dysfunction, and reduction of the postoperative infective complications. In this review, we would like to report the founding of our center, involving in the basic and clinical research progress of regulation of intestinal barrier by Lactobacillus and its active protein component MIMP. Furthermore, we may also promote our following studies about the MIMP and its clinical verification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-014-3701-9 | DOI Listing |
Front Immunol
January 2025
Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Introduction: Ulcerative colitis (UC) is a chronic inflammatory disease. Patients with UC typically exhibit disruption of the Treg/Th17 immune axis, but its exact mechanism is still unclear.
Methods: This study first analyzed RNA- seq data from public databases of humans and mice, and cytology experiments were conducted to induce or inhibit the expression of SIRT1.
Heliyon
January 2025
Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran.
The last decennia have witnessed spectacular advances in our knowledge about the influence of the gut microbiome on the development of a wide swathe of diseases that extend beyond the digestive tract, including skin diseases like psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. The novel concept of the gut-skin axis delves into how skin diseases and the microbiome interact through inflammatory mediators, metabolites, and the intestinal barrier. Elucidating the effects of the gut microbiome on skin health could provide new opportunities for developing innovative treatments for dermatological diseases.
View Article and Find Full Text PDFJ Toxicol Environ Health A
January 2025
Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder attributed to genetic and environmental factors. Microcystin-leucine-arginine (MC-LR) is an environmental toxin that accumulates in the gut and produces intestinal damage. The aim of this study was to investigate the effects of exposure to MC-LR on development and progression of IBD as well examine the underlying mechanisms of microcystin-initiated tissue damage.
View Article and Find Full Text PDFMol Med
January 2025
Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
The incidence of obesity is increasing annually worldwide. A high-fat diet (HFD) causes intestinal barrier damage, but effective interventions are currently unavailable. Our previous work demonstrated the therapeutic effect of nobiletin on obese mice; thus, we hypothesized that nobiletin could reverse HFD-induced damage to the intestinal barrier.
View Article and Find Full Text PDFPediatr Res
January 2025
Department of Pediatrics, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510623, China.
Although the role of breast milk in promoting neonatal growth and maintaining intestinal homeostasis is well established, underlying mechanisms by which it protects the intestine from damage remain to be elucidated. Human breast milk-derived exosomes (HMDEs) are newly discovered active signaling vesicles with a diameter of 30-150 nm, which are key carriers of biological information exchange between mother and child. In addition, due to their ability to cross the gastrointestinal barrier, low immunogenicity, good biocompatibility and stability, HMDEs play an important role in regulating intestinal barrier integrity in newborns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!