Basic and clinical research on the regulation of the intestinal barrier by Lactobacillus and its active protein components: a review with experience of one center.

Mol Biol Rep

Department of Colorectal Surgery, Gastrointestinal Institute of Sun Yat-Sen University, The Sixth Affiliated Hospital of Sun Yat-Sen University (Guangdong Gastrointestinal Hospital), 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, People's Republic of China,

Published: December 2014

Probiotics got protective effects on the intestinal barrier. Our present study is to review the basic and clinical progress on the regulation of the intestinal barrier by Lactobacillus and its active protein components, combing the study of our center. Our study have isolated the active component of micro integral membrane protein (MIMP) within the media place of the integral membrane protein of Lactobacillus plantarum, which was verified about the protective effects against the intestinal epithelial dysfunction. On the other hand, we also found the effects of perioperative use of probiotics in the prevention and treatment of postoperative intestinal barrier dysfunction, and reduction of the postoperative infective complications. In this review, we would like to report the founding of our center, involving in the basic and clinical research progress of regulation of intestinal barrier by Lactobacillus and its active protein component MIMP. Furthermore, we may also promote our following studies about the MIMP and its clinical verification.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-014-3701-9DOI Listing

Publication Analysis

Top Keywords

intestinal barrier
20
basic clinical
12
regulation intestinal
12
barrier lactobacillus
12
lactobacillus active
12
active protein
12
protein components
8
protective effects
8
effects intestinal
8
clinical progress
8

Similar Publications

Introduction: Ulcerative colitis (UC) is a chronic inflammatory disease. Patients with UC typically exhibit disruption of the Treg/Th17 immune axis, but its exact mechanism is still unclear.

Methods: This study first analyzed RNA- seq data from public databases of humans and mice, and cytology experiments were conducted to induce or inhibit the expression of SIRT1.

View Article and Find Full Text PDF

The last decennia have witnessed spectacular advances in our knowledge about the influence of the gut microbiome on the development of a wide swathe of diseases that extend beyond the digestive tract, including skin diseases like psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. The novel concept of the gut-skin axis delves into how skin diseases and the microbiome interact through inflammatory mediators, metabolites, and the intestinal barrier. Elucidating the effects of the gut microbiome on skin health could provide new opportunities for developing innovative treatments for dermatological diseases.

View Article and Find Full Text PDF

MC-LR induces and exacerbates Colitis in mice through the JAK1/STAT3 pathway.

J Toxicol Environ Health A

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.

Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder attributed to genetic and environmental factors. Microcystin-leucine-arginine (MC-LR) is an environmental toxin that accumulates in the gut and produces intestinal damage. The aim of this study was to investigate the effects of exposure to MC-LR on development and progression of IBD as well examine the underlying mechanisms of microcystin-initiated tissue damage.

View Article and Find Full Text PDF

The incidence of obesity is increasing annually worldwide. A high-fat diet (HFD) causes intestinal barrier damage, but effective interventions are currently unavailable. Our previous work demonstrated the therapeutic effect of nobiletin on obese mice; thus, we hypothesized that nobiletin could reverse HFD-induced damage to the intestinal barrier.

View Article and Find Full Text PDF

Human breast milk-derived exosomes and their positive role on neonatal intestinal health.

Pediatr Res

January 2025

Department of Pediatrics, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510623, China.

Although the role of breast milk in promoting neonatal growth and maintaining intestinal homeostasis is well established, underlying mechanisms by which it protects the intestine from damage remain to be elucidated. Human breast milk-derived exosomes (HMDEs) are newly discovered active signaling vesicles with a diameter of 30-150 nm, which are key carriers of biological information exchange between mother and child. In addition, due to their ability to cross the gastrointestinal barrier, low immunogenicity, good biocompatibility and stability, HMDEs play an important role in regulating intestinal barrier integrity in newborns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!